forked from phoenix/litellm-mirror
(feat) add Predicted Outputs
for OpenAI (#6594)
* bump openai to openai==1.54.0 * add 'prediction' param * testing fix bedrock deprecated cohere.command-text-v14 * test test_openai_prediction_param.py * test_openai_prediction_param_with_caching * doc Predicted Outputs * doc Predicted Output
This commit is contained in:
parent
57b1bb5e06
commit
c047d51cc8
12 changed files with 362 additions and 13 deletions
225
tests/llm_translation/test_openai_prediction_param.py
Normal file
225
tests/llm_translation/test_openai_prediction_param.py
Normal file
|
@ -0,0 +1,225 @@
|
|||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
from respx import MockRouter
|
||||
|
||||
import litellm
|
||||
from litellm import Choices, Message, ModelResponse
|
||||
|
||||
|
||||
def test_openai_prediction_param():
|
||||
litellm.set_verbose = True
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
completion = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
print(completion)
|
||||
|
||||
assert (
|
||||
completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
|
||||
or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.respx
|
||||
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
|
||||
"""
|
||||
Tests that prediction parameter is correctly passed to the API
|
||||
"""
|
||||
litellm.set_verbose = True
|
||||
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
mock_response = ModelResponse(
|
||||
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
|
||||
choices=[
|
||||
Choices(
|
||||
message=Message(
|
||||
content=code.replace("Username", "Email").replace(
|
||||
"username", "email"
|
||||
),
|
||||
role="assistant",
|
||||
)
|
||||
)
|
||||
],
|
||||
created=int(datetime.now().timestamp()),
|
||||
model="gpt-4o-mini-2024-07-18",
|
||||
usage={
|
||||
"completion_tokens": 207,
|
||||
"prompt_tokens": 175,
|
||||
"total_tokens": 382,
|
||||
"completion_tokens_details": {
|
||||
"accepted_prediction_tokens": 0,
|
||||
"reasoning_tokens": 0,
|
||||
"rejected_prediction_tokens": 80,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
|
||||
return_value=httpx.Response(200, json=mock_response.dict())
|
||||
)
|
||||
|
||||
completion = await litellm.acompletion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
assert mock_request.called
|
||||
request_body = json.loads(mock_request.calls[0].request.content)
|
||||
|
||||
# Verify the request contains the prediction parameter
|
||||
assert "prediction" in request_body
|
||||
# verify prediction is correctly sent to the API
|
||||
assert request_body["prediction"] == {"type": "content", "content": code}
|
||||
|
||||
# Verify the completion tokens details
|
||||
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
|
||||
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_openai_prediction_param_with_caching():
|
||||
"""
|
||||
Tests using `prediction` parameter with caching
|
||||
"""
|
||||
from litellm.caching.caching import LiteLLMCacheType
|
||||
import logging
|
||||
from litellm._logging import verbose_logger
|
||||
|
||||
verbose_logger.setLevel(logging.DEBUG)
|
||||
import time
|
||||
|
||||
litellm.set_verbose = True
|
||||
litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
completion_response_1 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# cache hit
|
||||
completion_response_2 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
assert completion_response_1.id == completion_response_2.id
|
||||
|
||||
completion_response_3 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{"role": "user", "content": "What is the first name of the user?"},
|
||||
],
|
||||
prediction={"type": "content", "content": code + "FirstName"},
|
||||
)
|
||||
|
||||
assert completion_response_3.id != completion_response_1.id
|
Loading…
Add table
Add a link
Reference in a new issue