forked from phoenix/litellm-mirror
(feat) add Predicted Outputs
for OpenAI (#6594)
* bump openai to openai==1.54.0 * add 'prediction' param * testing fix bedrock deprecated cohere.command-text-v14 * test test_openai_prediction_param.py * test_openai_prediction_param_with_caching * doc Predicted Outputs * doc Predicted Output
This commit is contained in:
parent
57b1bb5e06
commit
c047d51cc8
12 changed files with 362 additions and 13 deletions
|
@ -47,7 +47,7 @@ jobs:
|
|||
pip install opentelemetry-api==1.25.0
|
||||
pip install opentelemetry-sdk==1.25.0
|
||||
pip install opentelemetry-exporter-otlp==1.25.0
|
||||
pip install openai==1.52.0
|
||||
pip install openai==1.54.0
|
||||
pip install prisma==0.11.0
|
||||
pip install "detect_secrets==1.5.0"
|
||||
pip install "httpx==0.24.1"
|
||||
|
@ -520,7 +520,7 @@ jobs:
|
|||
pip install "aiodynamo==23.10.1"
|
||||
pip install "asyncio==3.4.3"
|
||||
pip install "PyGithub==1.59.1"
|
||||
pip install "openai==1.52.0"
|
||||
pip install "openai==1.54.0 "
|
||||
# Run pytest and generate JUnit XML report
|
||||
- run:
|
||||
name: Build Docker image
|
||||
|
@ -637,7 +637,7 @@ jobs:
|
|||
pip install "aiodynamo==23.10.1"
|
||||
pip install "asyncio==3.4.3"
|
||||
pip install "PyGithub==1.59.1"
|
||||
pip install "openai==1.52.0"
|
||||
pip install "openai==1.54.0 "
|
||||
- run:
|
||||
name: Build Docker image
|
||||
command: docker build -t my-app:latest -f ./docker/Dockerfile.database .
|
||||
|
@ -729,7 +729,7 @@ jobs:
|
|||
pip install "pytest-asyncio==0.21.1"
|
||||
pip install "google-cloud-aiplatform==1.43.0"
|
||||
pip install aiohttp
|
||||
pip install "openai==1.52.0"
|
||||
pip install "openai==1.54.0 "
|
||||
python -m pip install --upgrade pip
|
||||
pip install "pydantic==2.7.1"
|
||||
pip install "pytest==7.3.1"
|
||||
|
@ -924,7 +924,7 @@ jobs:
|
|||
pip install "pytest-retry==1.6.3"
|
||||
pip install "pytest-asyncio==0.21.1"
|
||||
pip install aiohttp
|
||||
pip install "openai==1.52.0"
|
||||
pip install "openai==1.54.0 "
|
||||
python -m pip install --upgrade pip
|
||||
pip install "pydantic==2.7.1"
|
||||
pip install "pytest==7.3.1"
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# used by CI/CD testing
|
||||
openai==1.52.0
|
||||
openai==1.54.0
|
||||
python-dotenv
|
||||
tiktoken
|
||||
importlib_metadata
|
||||
|
|
109
docs/my-website/docs/completion/predict_outputs.md
Normal file
109
docs/my-website/docs/completion/predict_outputs.md
Normal file
|
@ -0,0 +1,109 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Predicted Outputs
|
||||
|
||||
| Property | Details |
|
||||
|-------|-------|
|
||||
| Description | Use this when most of the output of the LLM is known ahead of time. For instance, if you are asking the model to rewrite some text or code with only minor changes, you can reduce your latency significantly by using Predicted Outputs, passing in the existing content as your prediction. |
|
||||
| Supported providers | `openai` |
|
||||
| Link to OpenAI doc on Predicted Outputs | [Predicted Outputs ↗](https://platform.openai.com/docs/guides/latency-optimization#use-predicted-outputs) |
|
||||
| Supported from LiteLLM Version | `v1.51.4` |
|
||||
|
||||
|
||||
|
||||
## Using Predicted Outputs
|
||||
|
||||
<Tabs>
|
||||
<TabItem label="LiteLLM Python SDK" value="Python">
|
||||
|
||||
In this example we want to refactor a piece of C# code, and convert the Username property to Email instead:
|
||||
```python
|
||||
import litellm
|
||||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
completion = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
print(completion)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem label="LiteLLM Proxy Server" value="proxy">
|
||||
|
||||
1. Define models on config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4o-mini # OpenAI gpt-4o-mini
|
||||
litellm_params:
|
||||
model: openai/gpt-4o-mini
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
|
||||
```
|
||||
|
||||
2. Run proxy server
|
||||
|
||||
```bash
|
||||
litellm --config config.yaml
|
||||
```
|
||||
|
||||
3. Test it using the OpenAI Python SDK
|
||||
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key="LITELLM_PROXY_KEY", # sk-1234
|
||||
base_url="LITELLM_PROXY_BASE" # http://0.0.0.0:4000
|
||||
)
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
print(completion)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
|
@ -205,6 +205,7 @@ const sidebars = {
|
|||
"completion/prompt_caching",
|
||||
"completion/audio",
|
||||
"completion/vision",
|
||||
"completion/predict_outputs",
|
||||
"completion/prefix",
|
||||
"completion/drop_params",
|
||||
"completion/prompt_formatting",
|
||||
|
|
|
@ -94,6 +94,7 @@ class OpenAIGPTConfig:
|
|||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"modalities",
|
||||
"prediction",
|
||||
"n",
|
||||
"presence_penalty",
|
||||
"seed",
|
||||
|
|
|
@ -162,6 +162,7 @@ from .types.llms.openai import (
|
|||
ChatCompletionAssistantMessage,
|
||||
ChatCompletionAudioParam,
|
||||
ChatCompletionModality,
|
||||
ChatCompletionPredictionContentParam,
|
||||
ChatCompletionUserMessage,
|
||||
HttpxBinaryResponseContent,
|
||||
)
|
||||
|
@ -304,6 +305,7 @@ async def acompletion(
|
|||
max_tokens: Optional[int] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
modalities: Optional[List[ChatCompletionModality]] = None,
|
||||
prediction: Optional[ChatCompletionPredictionContentParam] = None,
|
||||
audio: Optional[ChatCompletionAudioParam] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
|
@ -346,6 +348,7 @@ async def acompletion(
|
|||
max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
|
||||
max_completion_tokens (integer, optional): An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and reasoning tokens.
|
||||
modalities (List[ChatCompletionModality], optional): Output types that you would like the model to generate for this request. You can use `["text", "audio"]`
|
||||
prediction (ChatCompletionPredictionContentParam, optional): Configuration for a Predicted Output, which can greatly improve response times when large parts of the model response are known ahead of time. This is most common when you are regenerating a file with only minor changes to most of the content.
|
||||
audio (ChatCompletionAudioParam, optional): Parameters for audio output. Required when audio output is requested with modalities: ["audio"]
|
||||
presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
|
||||
frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
|
||||
|
@ -387,6 +390,7 @@ async def acompletion(
|
|||
"max_tokens": max_tokens,
|
||||
"max_completion_tokens": max_completion_tokens,
|
||||
"modalities": modalities,
|
||||
"prediction": prediction,
|
||||
"audio": audio,
|
||||
"presence_penalty": presence_penalty,
|
||||
"frequency_penalty": frequency_penalty,
|
||||
|
@ -693,6 +697,7 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
modalities: Optional[List[ChatCompletionModality]] = None,
|
||||
prediction: Optional[ChatCompletionPredictionContentParam] = None,
|
||||
audio: Optional[ChatCompletionAudioParam] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
|
@ -737,6 +742,7 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
|
||||
max_completion_tokens (integer, optional): An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and reasoning tokens.
|
||||
modalities (List[ChatCompletionModality], optional): Output types that you would like the model to generate for this request.. You can use `["text", "audio"]`
|
||||
prediction (ChatCompletionPredictionContentParam, optional): Configuration for a Predicted Output, which can greatly improve response times when large parts of the model response are known ahead of time. This is most common when you are regenerating a file with only minor changes to most of the content.
|
||||
audio (ChatCompletionAudioParam, optional): Parameters for audio output. Required when audio output is requested with modalities: ["audio"]
|
||||
presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
|
||||
frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
|
||||
|
@ -843,6 +849,7 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
"stop",
|
||||
"max_completion_tokens",
|
||||
"modalities",
|
||||
"prediction",
|
||||
"audio",
|
||||
"max_tokens",
|
||||
"presence_penalty",
|
||||
|
@ -994,6 +1001,7 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
max_tokens=max_tokens,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
modalities=modalities,
|
||||
prediction=prediction,
|
||||
audio=audio,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
|
|
|
@ -21,6 +21,9 @@ from openai.types.beta.threads.run import Run
|
|||
from openai.types.chat import ChatCompletionChunk
|
||||
from openai.types.chat.chat_completion_audio_param import ChatCompletionAudioParam
|
||||
from openai.types.chat.chat_completion_modality import ChatCompletionModality
|
||||
from openai.types.chat.chat_completion_prediction_content_param import (
|
||||
ChatCompletionPredictionContentParam,
|
||||
)
|
||||
from openai.types.embedding import Embedding as OpenAIEmbedding
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Dict, Required, TypedDict, override
|
||||
|
|
|
@ -2550,6 +2550,7 @@ def get_optional_params( # noqa: PLR0915
|
|||
max_tokens=None,
|
||||
max_completion_tokens=None,
|
||||
modalities=None,
|
||||
prediction=None,
|
||||
audio=None,
|
||||
presence_penalty=None,
|
||||
frequency_penalty=None,
|
||||
|
@ -2631,6 +2632,7 @@ def get_optional_params( # noqa: PLR0915
|
|||
"max_tokens": None,
|
||||
"max_completion_tokens": None,
|
||||
"modalities": None,
|
||||
"prediction": None,
|
||||
"audio": None,
|
||||
"presence_penalty": None,
|
||||
"frequency_penalty": None,
|
||||
|
|
10
poetry.lock
generated
10
poetry.lock
generated
|
@ -1823,13 +1823,13 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"]
|
|||
|
||||
[[package]]
|
||||
name = "openai"
|
||||
version = "1.52.0"
|
||||
version = "1.54.0"
|
||||
description = "The official Python library for the openai API"
|
||||
optional = false
|
||||
python-versions = ">=3.7.1"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "openai-1.52.0-py3-none-any.whl", hash = "sha256:0c249f20920183b0a2ca4f7dba7b0452df3ecd0fa7985eb1d91ad884bc3ced9c"},
|
||||
{file = "openai-1.52.0.tar.gz", hash = "sha256:95c65a5f77559641ab8f3e4c3a050804f7b51d278870e2ec1f7444080bfe565a"},
|
||||
{file = "openai-1.54.0-py3-none-any.whl", hash = "sha256:24ed8874b56e919f0fbb80b7136c3fb022dc82ce9f5f21579b7b280ea4bba249"},
|
||||
{file = "openai-1.54.0.tar.gz", hash = "sha256:df2a84384314165b706722a7ac8988dc33eba20dd7fc3b939d138110e608b1ce"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -3519,4 +3519,4 @@ proxy = ["PyJWT", "apscheduler", "backoff", "cryptography", "fastapi", "fastapi-
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.8.1,<4.0, !=3.9.7"
|
||||
content-hash = "491d361cabc637f8f896091b92855040da670bb7b311dcbfe75ad20eab97400c"
|
||||
content-hash = "64154f16e1bbea8b77ba3eddf1cbf051af39f019820d92b638c448445fa32c83"
|
||||
|
|
|
@ -17,7 +17,7 @@ documentation = "https://docs.litellm.ai"
|
|||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.8.1,<4.0, !=3.9.7"
|
||||
openai = ">=1.52.0"
|
||||
openai = ">=1.54.0"
|
||||
python-dotenv = ">=0.2.0"
|
||||
tiktoken = ">=0.7.0"
|
||||
importlib-metadata = ">=6.8.0"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# LITELLM PROXY DEPENDENCIES #
|
||||
anyio==4.4.0 # openai + http req.
|
||||
openai==1.52.0 # openai req.
|
||||
openai==1.54.0 # openai req.
|
||||
fastapi==0.111.0 # server dep
|
||||
backoff==2.2.1 # server dep
|
||||
pyyaml==6.0.0 # server dep
|
||||
|
|
225
tests/llm_translation/test_openai_prediction_param.py
Normal file
225
tests/llm_translation/test_openai_prediction_param.py
Normal file
|
@ -0,0 +1,225 @@
|
|||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
from respx import MockRouter
|
||||
|
||||
import litellm
|
||||
from litellm import Choices, Message, ModelResponse
|
||||
|
||||
|
||||
def test_openai_prediction_param():
|
||||
litellm.set_verbose = True
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
completion = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
print(completion)
|
||||
|
||||
assert (
|
||||
completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
|
||||
or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.respx
|
||||
async def test_openai_prediction_param_mock(respx_mock: MockRouter):
|
||||
"""
|
||||
Tests that prediction parameter is correctly passed to the API
|
||||
"""
|
||||
litellm.set_verbose = True
|
||||
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
mock_response = ModelResponse(
|
||||
id="chatcmpl-AQ5RmV8GvVSRxEcDxnuXlQnsibiY9",
|
||||
choices=[
|
||||
Choices(
|
||||
message=Message(
|
||||
content=code.replace("Username", "Email").replace(
|
||||
"username", "email"
|
||||
),
|
||||
role="assistant",
|
||||
)
|
||||
)
|
||||
],
|
||||
created=int(datetime.now().timestamp()),
|
||||
model="gpt-4o-mini-2024-07-18",
|
||||
usage={
|
||||
"completion_tokens": 207,
|
||||
"prompt_tokens": 175,
|
||||
"total_tokens": 382,
|
||||
"completion_tokens_details": {
|
||||
"accepted_prediction_tokens": 0,
|
||||
"reasoning_tokens": 0,
|
||||
"rejected_prediction_tokens": 80,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
|
||||
return_value=httpx.Response(200, json=mock_response.dict())
|
||||
)
|
||||
|
||||
completion = await litellm.acompletion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
assert mock_request.called
|
||||
request_body = json.loads(mock_request.calls[0].request.content)
|
||||
|
||||
# Verify the request contains the prediction parameter
|
||||
assert "prediction" in request_body
|
||||
# verify prediction is correctly sent to the API
|
||||
assert request_body["prediction"] == {"type": "content", "content": code}
|
||||
|
||||
# Verify the completion tokens details
|
||||
assert completion.usage.completion_tokens_details.accepted_prediction_tokens == 0
|
||||
assert completion.usage.completion_tokens_details.rejected_prediction_tokens == 80
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_openai_prediction_param_with_caching():
|
||||
"""
|
||||
Tests using `prediction` parameter with caching
|
||||
"""
|
||||
from litellm.caching.caching import LiteLLMCacheType
|
||||
import logging
|
||||
from litellm._logging import verbose_logger
|
||||
|
||||
verbose_logger.setLevel(logging.DEBUG)
|
||||
import time
|
||||
|
||||
litellm.set_verbose = True
|
||||
litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
|
||||
code = """
|
||||
/// <summary>
|
||||
/// Represents a user with a first name, last name, and username.
|
||||
/// </summary>
|
||||
public class User
|
||||
{
|
||||
/// <summary>
|
||||
/// Gets or sets the user's first name.
|
||||
/// </summary>
|
||||
public string FirstName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's last name.
|
||||
/// </summary>
|
||||
public string LastName { get; set; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets or sets the user's username.
|
||||
/// </summary>
|
||||
public string Username { get; set; }
|
||||
}
|
||||
"""
|
||||
|
||||
completion_response_1 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
# cache hit
|
||||
completion_response_2 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
||||
},
|
||||
{"role": "user", "content": code},
|
||||
],
|
||||
prediction={"type": "content", "content": code},
|
||||
)
|
||||
|
||||
assert completion_response_1.id == completion_response_2.id
|
||||
|
||||
completion_response_3 = litellm.completion(
|
||||
model="gpt-4o-mini",
|
||||
messages=[
|
||||
{"role": "user", "content": "What is the first name of the user?"},
|
||||
],
|
||||
prediction={"type": "content", "content": code + "FirstName"},
|
||||
)
|
||||
|
||||
assert completion_response_3.id != completion_response_1.id
|
Loading…
Add table
Add a link
Reference in a new issue