litellm/docs/my-website/docs/embedding/supported_embedding.md
2023-11-02 10:57:57 -07:00

4.9 KiB

Embedding Models

Quick Start

from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding('text-embedding-ada-002', input=["good morning from litellm"])

OpenAI Embedding Models

Usage

from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding('text-embedding-ada-002', input=["good morning from litellm"])
Model Name Function Call Required OS Variables
text-embedding-ada-002 embedding('text-embedding-ada-002', input) os.environ['OPENAI_API_KEY']

Azure OpenAI Embedding Models

API keys

This can be set as env variables or passed as params to litellm.embedding()

import os
os.environ['AZURE_API_KEY'] = 
os.environ['AZURE_API_BASE'] = 
os.environ['AZURE_API_VERSION'] = 

Usage

from litellm import embedding
response = embedding(
    model="azure/<your deployment name>",
    input=["good morning from litellm"],
    api_key=api_key,
    api_base=api_base,
    api_version=api_version,
)
print(response)
Model Name Function Call
text-embedding-ada-002 embedding(model="azure/<your deployment name>", input=input)

h/t to Mikko for this integration

Bedrock Embedding

API keys

This can be set as env variables or passed as params to litellm.embedding()

import os
os.environ["AWS_ACCESS_KEY_ID"] = ""  # Access key
os.environ["AWS_SECRET_ACCESS_KEY"] = "" # Secret access key
os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2

Usage

from litellm import embedding
response = embedding(
    model="amazon.titan-embed-text-v1",
    input=["good morning from litellm"],
)
print(response)
Model Name Function Call
Titan Embeddings - G1 embedding(model="amazon.titan-embed-text-v1", input=input)

Cohere Embedding Models

https://docs.cohere.com/reference/embed

Usage

from litellm import embedding
os.environ["COHERE_API_KEY"] = "cohere key"

# cohere call
response = embedding(
    model="embed-english-v3.0", 
    input=["good morning from litellm", "this is another item"], 
    input_type="search_document" # optional param for v3 llms
)
Model Name Function Call
embed-english-v3.0 embedding(model="embed-english-v3.0", input=["good morning from litellm", "this is another item"])
embed-english-light-v3.0 embedding(model="embed-english-light-v3.0", input=["good morning from litellm", "this is another item"])
embed-multilingual-v3.0 embedding(model="embed-multilingual-v3.0", input=["good morning from litellm", "this is another item"])
embed-multilingual-light-v3.0 embedding(model="embed-multilingual-light-v3.0", input=["good morning from litellm", "this is another item"])
embed-english-v2.0 embedding(model="embed-english-v2.0", input=["good morning from litellm", "this is another item"])
embed-english-light-v2.0 embedding(model="embed-english-light-v2.0", input=["good morning from litellm", "this is another item"])
embed-multilingual-v2.0 embedding(model="embed-multilingual-v2.0", input=["good morning from litellm", "this is another item"])

HuggingFace Embedding Models

LiteLLM supports all Feature-Extraction Embedding models: https://huggingface.co/models?pipeline_tag=feature-extraction

Usage

from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
    model='huggingface/microsoft/codebert-base', 
    input=["good morning from litellm"]
)
Model Name Function Call Required OS Variables
microsoft/codebert-base embedding('huggingface/microsoft/codebert-base', input=input) os.environ['HUGGINGFACE_API_KEY']
BAAI/bge-large-zh embedding('huggingface/BAAI/bge-large-zh', input=input) os.environ['HUGGINGFACE_API_KEY']
any-hf-embedding-model embedding('huggingface/hf-embedding-model', input=input) os.environ['HUGGINGFACE_API_KEY']