forked from phoenix/litellm-mirror
1507 lines
No EOL
38 KiB
Markdown
1507 lines
No EOL
38 KiB
Markdown
import Image from '@theme/IdealImage';
|
|
import Tabs from '@theme/Tabs';
|
|
import TabItem from '@theme/TabItem';
|
|
|
|
|
|
# 🪢 Logging - Langfuse, OpenTelemetry, Custom Callbacks, DataDog, s3 Bucket, Sentry, Athina, Azure Content-Safety
|
|
|
|
Log Proxy Input, Output, Exceptions using Langfuse, OpenTelemetry, Custom Callbacks, DataDog, DynamoDB, s3 Bucket
|
|
|
|
- [Logging to Langfuse](#logging-proxy-inputoutput---langfuse)
|
|
- [Logging with OpenTelemetry (OpenTelemetry)](#logging-proxy-inputoutput-in-opentelemetry-format)
|
|
- [Async Custom Callbacks](#custom-callback-class-async)
|
|
- [Async Custom Callback APIs](#custom-callback-apis-async)
|
|
- [Logging to OpenMeter](#logging-proxy-inputoutput---langfuse)
|
|
- [Logging to s3 Buckets](#logging-proxy-inputoutput---s3-buckets)
|
|
- [Logging to DataDog](#logging-proxy-inputoutput---datadog)
|
|
- [Logging to DynamoDB](#logging-proxy-inputoutput---dynamodb)
|
|
- [Logging to Sentry](#logging-proxy-inputoutput---sentry)
|
|
- [Logging to Athina](#logging-proxy-inputoutput-athina)
|
|
- [(BETA) Moderation with Azure Content-Safety](#moderation-with-azure-content-safety)
|
|
|
|
## Logging Proxy Input/Output - Langfuse
|
|
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your environment
|
|
|
|
**Step 1** Install langfuse
|
|
|
|
```shell
|
|
pip install langfuse>=2.0.0
|
|
```
|
|
|
|
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
success_callback: ["langfuse"]
|
|
```
|
|
|
|
**Step 3**: Set required env variables for logging to langfuse
|
|
```shell
|
|
export LANGFUSE_PUBLIC_KEY="pk_kk"
|
|
export LANGFUSE_SECRET_KEY="sk_ss"
|
|
# Optional, defaults to https://cloud.langfuse.com
|
|
export LANGFUSE_HOST="https://xxx.langfuse.com"
|
|
```
|
|
|
|
**Step 4**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
```shell
|
|
litellm --config config.yaml --debug
|
|
```
|
|
|
|
Test Request
|
|
```
|
|
litellm --test
|
|
```
|
|
|
|
Expected output on Langfuse
|
|
|
|
<Image img={require('../../img/langfuse_small.png')} />
|
|
|
|
### Logging Metadata to Langfuse
|
|
|
|
|
|
<Tabs>
|
|
|
|
<TabItem value="Curl" label="Curl Request">
|
|
|
|
Pass `metadata` as part of the request body
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data '{
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
"metadata": {
|
|
"generation_name": "ishaan-test-generation",
|
|
"generation_id": "gen-id22",
|
|
"trace_id": "trace-id22",
|
|
"trace_user_id": "user-id2"
|
|
}
|
|
}'
|
|
```
|
|
</TabItem>
|
|
<TabItem value="openai" label="OpenAI v1.0.0+">
|
|
|
|
Set `extra_body={"metadata": { }}` to `metadata` you want to pass
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(
|
|
model="gpt-3.5-turbo",
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, write a short poem"
|
|
}
|
|
],
|
|
extra_body={
|
|
"metadata": {
|
|
"generation_name": "ishaan-generation-openai-client",
|
|
"generation_id": "openai-client-gen-id22",
|
|
"trace_id": "openai-client-trace-id22",
|
|
"trace_user_id": "openai-client-user-id2"
|
|
}
|
|
}
|
|
)
|
|
|
|
print(response)
|
|
```
|
|
</TabItem>
|
|
<TabItem value="langchain" label="Langchain">
|
|
|
|
```python
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
)
|
|
from langchain.schema import HumanMessage, SystemMessage
|
|
|
|
chat = ChatOpenAI(
|
|
openai_api_base="http://0.0.0.0:4000",
|
|
model = "gpt-3.5-turbo",
|
|
temperature=0.1,
|
|
extra_body={
|
|
"metadata": {
|
|
"generation_name": "ishaan-generation-langchain-client",
|
|
"generation_id": "langchain-client-gen-id22",
|
|
"trace_id": "langchain-client-trace-id22",
|
|
"trace_user_id": "langchain-client-user-id2"
|
|
}
|
|
}
|
|
)
|
|
|
|
messages = [
|
|
SystemMessage(
|
|
content="You are a helpful assistant that im using to make a test request to."
|
|
),
|
|
HumanMessage(
|
|
content="test from litellm. tell me why it's amazing in 1 sentence"
|
|
),
|
|
]
|
|
response = chat(messages)
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
</Tabs>
|
|
|
|
|
|
### Team based Logging to Langfuse
|
|
|
|
**Example:**
|
|
|
|
This config would send langfuse logs to 2 different langfuse projects, based on the team id
|
|
|
|
```yaml
|
|
litellm_settings:
|
|
default_team_settings:
|
|
- team_id: my-secret-project
|
|
success_callback: ["langfuse"]
|
|
langfuse_public_key: os.environ/LANGFUSE_PUB_KEY_1 # Project 1
|
|
langfuse_secret: os.environ/LANGFUSE_PRIVATE_KEY_1 # Project 1
|
|
- team_id: ishaans-secret-project
|
|
success_callback: ["langfuse"]
|
|
langfuse_public_key: os.environ/LANGFUSE_PUB_KEY_2 # Project 2
|
|
langfuse_secret: os.environ/LANGFUSE_SECRET_2 # Project 2
|
|
```
|
|
|
|
Now, when you [generate keys](./virtual_keys.md) for this team-id
|
|
|
|
```bash
|
|
curl -X POST 'http://0.0.0.0:4000/key/generate' \
|
|
-H 'Authorization: Bearer sk-1234' \
|
|
-H 'Content-Type: application/json' \
|
|
-d '{"team_id": "ishaans-secret-project"}'
|
|
```
|
|
|
|
All requests made with these keys will log data to their team-specific logging.
|
|
|
|
### Redacting Messages, Response Content from Langfuse Logging
|
|
|
|
Set `litellm.turn_off_message_logging=True` This will prevent the messages and responses from being logged to langfuse, but request metadata will still be logged.
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
success_callback: ["langfuse"]
|
|
turn_off_message_logging: True
|
|
```
|
|
|
|
If you have this feature turned on, you can override it for specific requests by
|
|
setting a request header `LiteLLM-Disable-Message-Redaction: true`.
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--header 'LiteLLM-Disable-Message-Redaction: true' \
|
|
--data '{
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
### 🔧 Debugging - Viewing RAW CURL sent from LiteLLM to provider
|
|
|
|
Use this when you want to view the RAW curl request sent from LiteLLM to the LLM API
|
|
|
|
<Tabs>
|
|
|
|
<TabItem value="Curl" label="Curl Request">
|
|
|
|
Pass `metadata` as part of the request body
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data '{
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
"metadata": {
|
|
"log_raw_request": true
|
|
}
|
|
}'
|
|
```
|
|
</TabItem>
|
|
<TabItem value="openai" label="OpenAI v1.0.0+">
|
|
|
|
Set `extra_body={"metadata": {"log_raw_request": True }}` to `metadata` you want to pass
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(
|
|
model="gpt-3.5-turbo",
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, write a short poem"
|
|
}
|
|
],
|
|
extra_body={
|
|
"metadata": {
|
|
"log_raw_request": True
|
|
}
|
|
}
|
|
)
|
|
|
|
print(response)
|
|
```
|
|
</TabItem>
|
|
<TabItem value="langchain" label="Langchain">
|
|
|
|
```python
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
)
|
|
from langchain.schema import HumanMessage, SystemMessage
|
|
|
|
chat = ChatOpenAI(
|
|
openai_api_base="http://0.0.0.0:4000",
|
|
model = "gpt-3.5-turbo",
|
|
temperature=0.1,
|
|
extra_body={
|
|
"metadata": {
|
|
"log_raw_request": True
|
|
}
|
|
}
|
|
)
|
|
|
|
messages = [
|
|
SystemMessage(
|
|
content="You are a helpful assistant that im using to make a test request to."
|
|
),
|
|
HumanMessage(
|
|
content="test from litellm. tell me why it's amazing in 1 sentence"
|
|
),
|
|
]
|
|
response = chat(messages)
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
</Tabs>
|
|
|
|
**Expected Output on Langfuse**
|
|
|
|
You will see `raw_request` in your Langfuse Metadata. This is the RAW CURL command sent from LiteLLM to your LLM API provider
|
|
|
|
<Image img={require('../../img/debug_langfuse.png')} />
|
|
|
|
|
|
## Logging Proxy Input/Output in OpenTelemetry format
|
|
|
|
:::info
|
|
|
|
[Optional] Customize OTEL Service Name and OTEL TRACER NAME by setting the following variables in your environment
|
|
|
|
```shell
|
|
OTEL_TRACER_NAME=<your-trace-name> # default="litellm"
|
|
OTEL_SERVICE_NAME=<your-service-name>` # default="litellm"
|
|
```
|
|
|
|
:::
|
|
|
|
<Tabs>
|
|
|
|
|
|
<TabItem value="Console Exporter" label="Log to console">
|
|
|
|
|
|
**Step 1:** Set callbacks and env vars
|
|
|
|
Add the following to your env
|
|
|
|
```shell
|
|
OTEL_EXPORTER="console"
|
|
```
|
|
|
|
Add `otel` as a callback on your `litellm_config.yaml`
|
|
|
|
```shell
|
|
litellm_settings:
|
|
callbacks: ["otel"]
|
|
```
|
|
|
|
|
|
**Step 2**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
|
|
```shell
|
|
litellm --config config.yaml --detailed_debug
|
|
```
|
|
|
|
Test Request
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
**Step 3**: **Expect to see the following logged on your server logs / console**
|
|
|
|
This is the Span from OTEL Logging
|
|
|
|
```json
|
|
{
|
|
"name": "litellm-acompletion",
|
|
"context": {
|
|
"trace_id": "0x8d354e2346060032703637a0843b20a3",
|
|
"span_id": "0xd8d3476a2eb12724",
|
|
"trace_state": "[]"
|
|
},
|
|
"kind": "SpanKind.INTERNAL",
|
|
"parent_id": null,
|
|
"start_time": "2024-06-04T19:46:56.415888Z",
|
|
"end_time": "2024-06-04T19:46:56.790278Z",
|
|
"status": {
|
|
"status_code": "OK"
|
|
},
|
|
"attributes": {
|
|
"model": "llama3-8b-8192"
|
|
},
|
|
"events": [],
|
|
"links": [],
|
|
"resource": {
|
|
"attributes": {
|
|
"service.name": "litellm"
|
|
},
|
|
"schema_url": ""
|
|
}
|
|
}
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
|
|
<TabItem value="Honeycomb" label="Log to Honeycomb">
|
|
|
|
#### Quick Start - Log to Honeycomb
|
|
|
|
**Step 1:** Set callbacks and env vars
|
|
|
|
Add the following to your env
|
|
|
|
```shell
|
|
OTEL_EXPORTER="otlp_http"
|
|
OTEL_ENDPOINT="https://api.honeycomb.io/v1/traces"
|
|
OTEL_HEADERS="x-honeycomb-team=<your-api-key>"
|
|
```
|
|
|
|
Add `otel` as a callback on your `litellm_config.yaml`
|
|
|
|
```shell
|
|
litellm_settings:
|
|
callbacks: ["otel"]
|
|
```
|
|
|
|
|
|
**Step 2**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
|
|
```shell
|
|
litellm --config config.yaml --detailed_debug
|
|
```
|
|
|
|
Test Request
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
|
|
</TabItem>
|
|
|
|
|
|
<TabItem value="otel-col" label="Log to OTEL HTTP Collector">
|
|
|
|
#### Quick Start - Log to OTEL Collector
|
|
|
|
**Step 1:** Set callbacks and env vars
|
|
|
|
Add the following to your env
|
|
|
|
```shell
|
|
OTEL_EXPORTER="otlp_http"
|
|
OTEL_ENDPOINT="http:/0.0.0.0:4317"
|
|
OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional
|
|
```
|
|
|
|
Add `otel` as a callback on your `litellm_config.yaml`
|
|
|
|
```shell
|
|
litellm_settings:
|
|
callbacks: ["otel"]
|
|
```
|
|
|
|
|
|
**Step 2**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
|
|
```shell
|
|
litellm --config config.yaml --detailed_debug
|
|
```
|
|
|
|
Test Request
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
|
|
<TabItem value="otel-col-grpc" label="Log to OTEL GRPC Collector">
|
|
|
|
#### Quick Start - Log to OTEL GRPC Collector
|
|
|
|
**Step 1:** Set callbacks and env vars
|
|
|
|
Add the following to your env
|
|
|
|
```shell
|
|
OTEL_EXPORTER="otlp_grpc"
|
|
OTEL_ENDPOINT="http:/0.0.0.0:4317"
|
|
OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional
|
|
```
|
|
|
|
Add `otel` as a callback on your `litellm_config.yaml`
|
|
|
|
```shell
|
|
litellm_settings:
|
|
callbacks: ["otel"]
|
|
```
|
|
|
|
|
|
**Step 2**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
|
|
```shell
|
|
litellm --config config.yaml --detailed_debug
|
|
```
|
|
|
|
Test Request
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="traceloop" label="Log to Traceloop Cloud">
|
|
|
|
#### Quick Start - Log to Traceloop
|
|
|
|
**Step 1:** Install the `traceloop-sdk` SDK
|
|
|
|
```shell
|
|
pip install traceloop-sdk==0.21.2
|
|
```
|
|
|
|
**Step 2:** Add `traceloop` as a success_callback
|
|
|
|
```shell
|
|
litellm_settings:
|
|
success_callback: ["traceloop"]
|
|
|
|
environment_variables:
|
|
TRACELOOP_API_KEY: "XXXXX"
|
|
```
|
|
|
|
|
|
**Step 3**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
|
|
```shell
|
|
litellm --config config.yaml --detailed_debug
|
|
```
|
|
|
|
Test Request
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
</Tabs>
|
|
|
|
** 🎉 Expect to see this trace logged in your OTEL collector**
|
|
|
|
### Context propagation across Services `Traceparent HTTP Header`
|
|
|
|
❓ Use this when you want to **pass information about the incoming request in a distributed tracing system**
|
|
|
|
✅ Key change: Pass the **`traceparent` header** in your requests. [Read more about traceparent headers here](https://uptrace.dev/opentelemetry/opentelemetry-traceparent.html#what-is-traceparent-header)
|
|
```curl
|
|
traceparent: 00-80e1afed08e019fc1110464cfa66635c-7a085853722dc6d2-01
|
|
```
|
|
Example Usage
|
|
1. Make Request to LiteLLM Proxy with `traceparent` header
|
|
```python
|
|
import openai
|
|
import uuid
|
|
|
|
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
|
|
example_traceparent = f"00-80e1afed08e019fc1110464cfa66635c-02e80198930058d4-01"
|
|
extra_headers = {
|
|
"traceparent": example_traceparent
|
|
}
|
|
_trace_id = example_traceparent.split("-")[1]
|
|
|
|
print("EXTRA HEADERS: ", extra_headers)
|
|
print("Trace ID: ", _trace_id)
|
|
|
|
response = client.chat.completions.create(
|
|
model="llama3",
|
|
messages=[
|
|
{"role": "user", "content": "this is a test request, write a short poem"}
|
|
],
|
|
extra_headers=extra_headers,
|
|
)
|
|
|
|
print(response)
|
|
|
|
```
|
|
|
|
```shell
|
|
# EXTRA HEADERS: {'traceparent': '00-80e1afed08e019fc1110464cfa66635c-02e80198930058d4-01'}
|
|
# Trace ID: 80e1afed08e019fc1110464cfa66635c
|
|
```
|
|
|
|
2. Lookup Trace ID on OTEL Logger
|
|
|
|
Search for Trace=`80e1afed08e019fc1110464cfa66635c` on your OTEL Collector
|
|
|
|
<Image img={require('../../img/otel_parent.png')} />
|
|
|
|
|
|
|
|
## Custom Callback Class [Async]
|
|
Use this when you want to run custom callbacks in `python`
|
|
|
|
#### Step 1 - Create your custom `litellm` callback class
|
|
We use `litellm.integrations.custom_logger` for this, **more details about litellm custom callbacks [here](https://docs.litellm.ai/docs/observability/custom_callback)**
|
|
|
|
Define your custom callback class in a python file.
|
|
|
|
Here's an example custom logger for tracking `key, user, model, prompt, response, tokens, cost`. We create a file called `custom_callbacks.py` and initialize `proxy_handler_instance`
|
|
|
|
```python
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
import litellm
|
|
|
|
# This file includes the custom callbacks for LiteLLM Proxy
|
|
# Once defined, these can be passed in proxy_config.yaml
|
|
class MyCustomHandler(CustomLogger):
|
|
def log_pre_api_call(self, model, messages, kwargs):
|
|
print(f"Pre-API Call")
|
|
|
|
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"Post-API Call")
|
|
|
|
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Stream")
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print("On Success")
|
|
|
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Failure")
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Async Success!")
|
|
# log: key, user, model, prompt, response, tokens, cost
|
|
# Access kwargs passed to litellm.completion()
|
|
model = kwargs.get("model", None)
|
|
messages = kwargs.get("messages", None)
|
|
user = kwargs.get("user", None)
|
|
|
|
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
|
litellm_params = kwargs.get("litellm_params", {})
|
|
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
|
|
|
# Calculate cost using litellm.completion_cost()
|
|
cost = litellm.completion_cost(completion_response=response_obj)
|
|
response = response_obj
|
|
# tokens used in response
|
|
usage = response_obj["usage"]
|
|
|
|
print(
|
|
f"""
|
|
Model: {model},
|
|
Messages: {messages},
|
|
User: {user},
|
|
Usage: {usage},
|
|
Cost: {cost},
|
|
Response: {response}
|
|
Proxy Metadata: {metadata}
|
|
"""
|
|
)
|
|
return
|
|
|
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
print(f"On Async Failure !")
|
|
print("\nkwargs", kwargs)
|
|
# Access kwargs passed to litellm.completion()
|
|
model = kwargs.get("model", None)
|
|
messages = kwargs.get("messages", None)
|
|
user = kwargs.get("user", None)
|
|
|
|
# Access litellm_params passed to litellm.completion(), example access `metadata`
|
|
litellm_params = kwargs.get("litellm_params", {})
|
|
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
|
|
|
# Acess Exceptions & Traceback
|
|
exception_event = kwargs.get("exception", None)
|
|
traceback_event = kwargs.get("traceback_exception", None)
|
|
|
|
# Calculate cost using litellm.completion_cost()
|
|
cost = litellm.completion_cost(completion_response=response_obj)
|
|
print("now checking response obj")
|
|
|
|
print(
|
|
f"""
|
|
Model: {model},
|
|
Messages: {messages},
|
|
User: {user},
|
|
Cost: {cost},
|
|
Response: {response_obj}
|
|
Proxy Metadata: {metadata}
|
|
Exception: {exception_event}
|
|
Traceback: {traceback_event}
|
|
"""
|
|
)
|
|
except Exception as e:
|
|
print(f"Exception: {e}")
|
|
|
|
proxy_handler_instance = MyCustomHandler()
|
|
|
|
# Set litellm.callbacks = [proxy_handler_instance] on the proxy
|
|
# need to set litellm.callbacks = [proxy_handler_instance] # on the proxy
|
|
```
|
|
|
|
#### Step 2 - Pass your custom callback class in `config.yaml`
|
|
We pass the custom callback class defined in **Step1** to the config.yaml.
|
|
Set `callbacks` to `python_filename.logger_instance_name`
|
|
|
|
In the config below, we pass
|
|
- python_filename: `custom_callbacks.py`
|
|
- logger_instance_name: `proxy_handler_instance`. This is defined in Step 1
|
|
|
|
`callbacks: custom_callbacks.proxy_handler_instance`
|
|
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
|
|
litellm_settings:
|
|
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]
|
|
|
|
```
|
|
|
|
#### Step 3 - Start proxy + test request
|
|
```shell
|
|
litellm --config proxy_config.yaml
|
|
```
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Authorization: Bearer sk-1234' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "good morning good sir"
|
|
}
|
|
],
|
|
"user": "ishaan-app",
|
|
"temperature": 0.2
|
|
}'
|
|
```
|
|
|
|
#### Resulting Log on Proxy
|
|
```shell
|
|
On Success
|
|
Model: gpt-3.5-turbo,
|
|
Messages: [{'role': 'user', 'content': 'good morning good sir'}],
|
|
User: ishaan-app,
|
|
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
|
|
Cost: 3.65e-05,
|
|
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
|
|
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:4000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
|
|
```
|
|
|
|
#### Logging Proxy Request Object, Header, Url
|
|
|
|
Here's how you can access the `url`, `headers`, `request body` sent to the proxy for each request
|
|
|
|
```python
|
|
class MyCustomHandler(CustomLogger):
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Async Success!")
|
|
|
|
litellm_params = kwargs.get("litellm_params", None)
|
|
proxy_server_request = litellm_params.get("proxy_server_request")
|
|
print(proxy_server_request)
|
|
```
|
|
|
|
**Expected Output**
|
|
|
|
```shell
|
|
{
|
|
"url": "http://testserver/chat/completions",
|
|
"method": "POST",
|
|
"headers": {
|
|
"host": "testserver",
|
|
"accept": "*/*",
|
|
"accept-encoding": "gzip, deflate",
|
|
"connection": "keep-alive",
|
|
"user-agent": "testclient",
|
|
"authorization": "Bearer None",
|
|
"content-length": "105",
|
|
"content-type": "application/json"
|
|
},
|
|
"body": {
|
|
"model": "Azure OpenAI GPT-4 Canada",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "hi"
|
|
}
|
|
],
|
|
"max_tokens": 10
|
|
}
|
|
}
|
|
|
|
```
|
|
|
|
#### Logging `model_info` set in config.yaml
|
|
|
|
Here is how to log the `model_info` set in your proxy `config.yaml`. Information on setting `model_info` on [config.yaml](https://docs.litellm.ai/docs/proxy/configs)
|
|
|
|
```python
|
|
class MyCustomHandler(CustomLogger):
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Async Success!")
|
|
|
|
litellm_params = kwargs.get("litellm_params", None)
|
|
model_info = litellm_params.get("model_info")
|
|
print(model_info)
|
|
```
|
|
|
|
**Expected Output**
|
|
```json
|
|
{'mode': 'embedding', 'input_cost_per_token': 0.002}
|
|
```
|
|
|
|
### Logging responses from proxy
|
|
Both `/chat/completions` and `/embeddings` responses are available as `response_obj`
|
|
|
|
**Note: for `/chat/completions`, both `stream=True` and `non stream` responses are available as `response_obj`**
|
|
|
|
```python
|
|
class MyCustomHandler(CustomLogger):
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print(f"On Async Success!")
|
|
print(response_obj)
|
|
|
|
```
|
|
|
|
**Expected Output /chat/completion [for both `stream` and `non-stream` responses]**
|
|
```json
|
|
ModelResponse(
|
|
id='chatcmpl-8Tfu8GoMElwOZuj2JlHBhNHG01PPo',
|
|
choices=[
|
|
Choices(
|
|
finish_reason='stop',
|
|
index=0,
|
|
message=Message(
|
|
content='As an AI language model, I do not have a physical body and therefore do not possess any degree or educational qualifications. My knowledge and abilities come from the programming and algorithms that have been developed by my creators.',
|
|
role='assistant'
|
|
)
|
|
)
|
|
],
|
|
created=1702083284,
|
|
model='chatgpt-v-2',
|
|
object='chat.completion',
|
|
system_fingerprint=None,
|
|
usage=Usage(
|
|
completion_tokens=42,
|
|
prompt_tokens=5,
|
|
total_tokens=47
|
|
)
|
|
)
|
|
```
|
|
|
|
**Expected Output /embeddings**
|
|
```json
|
|
{
|
|
'model': 'ada',
|
|
'data': [
|
|
{
|
|
'embedding': [
|
|
-0.035126980394124985, -0.020624293014407158, -0.015343423001468182,
|
|
-0.03980357199907303, -0.02750781551003456, 0.02111034281551838,
|
|
-0.022069307044148445, -0.019442008808255196, -0.00955679826438427,
|
|
-0.013143060728907585, 0.029583381488919258, -0.004725852981209755,
|
|
-0.015198921784758568, -0.014069183729588985, 0.00897879246622324,
|
|
0.01521205808967352,
|
|
# ... (truncated for brevity)
|
|
]
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
|
|
## Custom Callback APIs [Async]
|
|
|
|
:::info
|
|
|
|
This is an Enterprise only feature [Get Started with Enterprise here](https://github.com/BerriAI/litellm/tree/main/enterprise)
|
|
|
|
:::
|
|
|
|
Use this if you:
|
|
- Want to use custom callbacks written in a non Python programming language
|
|
- Want your callbacks to run on a different microservice
|
|
|
|
#### Step 1. Create your generic logging API endpoint
|
|
Set up a generic API endpoint that can receive data in JSON format. The data will be included within a "data" field.
|
|
|
|
Your server should support the following Request format:
|
|
|
|
```shell
|
|
curl --location https://your-domain.com/log-event \
|
|
--request POST \
|
|
--header "Content-Type: application/json" \
|
|
--data '{
|
|
"data": {
|
|
"id": "chatcmpl-8sgE89cEQ4q9biRtxMvDfQU1O82PT",
|
|
"call_type": "acompletion",
|
|
"cache_hit": "None",
|
|
"startTime": "2024-02-15 16:18:44.336280",
|
|
"endTime": "2024-02-15 16:18:45.045539",
|
|
"model": "gpt-3.5-turbo",
|
|
"user": "ishaan-2",
|
|
"modelParameters": "{'temperature': 0.7, 'max_tokens': 10, 'user': 'ishaan-2', 'extra_body': {}}",
|
|
"messages": "[{'role': 'user', 'content': 'This is a test'}]",
|
|
"response": "ModelResponse(id='chatcmpl-8sgE89cEQ4q9biRtxMvDfQU1O82PT', choices=[Choices(finish_reason='length', index=0, message=Message(content='Great! How can I assist you with this test', role='assistant'))], created=1708042724, model='gpt-3.5-turbo-0613', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=10, prompt_tokens=11, total_tokens=21))",
|
|
"usage": "Usage(completion_tokens=10, prompt_tokens=11, total_tokens=21)",
|
|
"metadata": "{}",
|
|
"cost": "3.65e-05"
|
|
}
|
|
}'
|
|
```
|
|
|
|
Reference FastAPI Python Server
|
|
|
|
Here's a reference FastAPI Server that is compatible with LiteLLM Proxy:
|
|
|
|
```python
|
|
# this is an example endpoint to receive data from litellm
|
|
from fastapi import FastAPI, HTTPException, Request
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
@app.post("/log-event")
|
|
async def log_event(request: Request):
|
|
try:
|
|
print("Received /log-event request")
|
|
# Assuming the incoming request has JSON data
|
|
data = await request.json()
|
|
print("Received request data:")
|
|
print(data)
|
|
|
|
# Your additional logic can go here
|
|
# For now, just printing the received data
|
|
|
|
return {"message": "Request received successfully"}
|
|
except Exception as e:
|
|
print(f"Error processing request: {str(e)}")
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
raise HTTPException(status_code=500, detail="Internal Server Error")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
uvicorn.run(app, host="127.0.0.1", port=4000)
|
|
|
|
|
|
```
|
|
|
|
|
|
#### Step 2. Set your `GENERIC_LOGGER_ENDPOINT` to the endpoint + route we should send callback logs to
|
|
|
|
```shell
|
|
os.environ["GENERIC_LOGGER_ENDPOINT"] = "http://localhost:4000/log-event"
|
|
```
|
|
|
|
#### Step 3. Create a `config.yaml` file and set `litellm_settings`: `success_callback` = ["generic"]
|
|
|
|
Example litellm proxy config.yaml
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
success_callback: ["generic"]
|
|
```
|
|
|
|
Start the LiteLLM Proxy and make a test request to verify the logs reached your callback API
|
|
|
|
## Logging Proxy Cost + Usage - OpenMeter
|
|
|
|
Bill customers according to their LLM API usage with [OpenMeter](../observability/openmeter.md)
|
|
|
|
**Required Env Variables**
|
|
|
|
```bash
|
|
# from https://openmeter.cloud
|
|
export OPENMETER_API_ENDPOINT="" # defaults to https://openmeter.cloud
|
|
export OPENMETER_API_KEY=""
|
|
```
|
|
|
|
### Quick Start
|
|
|
|
1. Add to Config.yaml
|
|
```yaml
|
|
model_list:
|
|
- litellm_params:
|
|
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
|
|
api_key: my-fake-key
|
|
model: openai/my-fake-model
|
|
model_name: fake-openai-endpoint
|
|
|
|
litellm_settings:
|
|
success_callback: ["openmeter"] # 👈 KEY CHANGE
|
|
```
|
|
|
|
2. Start Proxy
|
|
|
|
```
|
|
litellm --config /path/to/config.yaml
|
|
```
|
|
|
|
3. Test it!
|
|
|
|
```bash
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "fake-openai-endpoint",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
}
|
|
'
|
|
```
|
|
|
|
|
|
<Image img={require('../../img/openmeter_img_2.png')} />
|
|
|
|
## Logging Proxy Input/Output - DataDog
|
|
We will use the `--config` to set `litellm.success_callback = ["datadog"]` this will log all successfull LLM calls to DataDog
|
|
|
|
**Step 1**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
success_callback: ["datadog"]
|
|
```
|
|
|
|
**Step 2**: Set Required env variables for datadog
|
|
|
|
```shell
|
|
DD_API_KEY="5f2d0f310***********" # your datadog API Key
|
|
DD_SITE="us5.datadoghq.com" # your datadog base url
|
|
```
|
|
|
|
**Step 3**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
```shell
|
|
litellm --config config.yaml --debug
|
|
```
|
|
|
|
Test Request
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data '{
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
"metadata": {
|
|
"your-custom-metadata": "custom-field",
|
|
}
|
|
}'
|
|
```
|
|
|
|
Expected output on Datadog
|
|
|
|
<Image img={require('../../img/dd_small1.png')} />
|
|
|
|
|
|
## Logging Proxy Input/Output - s3 Buckets
|
|
|
|
We will use the `--config` to set
|
|
- `litellm.success_callback = ["s3"]`
|
|
|
|
This will log all successfull LLM calls to s3 Bucket
|
|
|
|
**Step 1** Set AWS Credentials in .env
|
|
|
|
```shell
|
|
AWS_ACCESS_KEY_ID = ""
|
|
AWS_SECRET_ACCESS_KEY = ""
|
|
AWS_REGION_NAME = ""
|
|
```
|
|
|
|
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
success_callback: ["s3"]
|
|
s3_callback_params:
|
|
s3_bucket_name: logs-bucket-litellm # AWS Bucket Name for S3
|
|
s3_region_name: us-west-2 # AWS Region Name for S3
|
|
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
|
|
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
|
|
s3_path: my-test-path # [OPTIONAL] set path in bucket you want to write logs to
|
|
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 buckets
|
|
```
|
|
|
|
**Step 3**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
```shell
|
|
litellm --config config.yaml --debug
|
|
```
|
|
|
|
Test Request
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "Azure OpenAI GPT-4 East",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
Your logs should be available on the specified s3 Bucket
|
|
|
|
## Logging Proxy Input/Output - DynamoDB
|
|
|
|
We will use the `--config` to set
|
|
- `litellm.success_callback = ["dynamodb"]`
|
|
- `litellm.dynamodb_table_name = "your-table-name"`
|
|
|
|
This will log all successfull LLM calls to DynamoDB
|
|
|
|
**Step 1** Set AWS Credentials in .env
|
|
|
|
```shell
|
|
AWS_ACCESS_KEY_ID = ""
|
|
AWS_SECRET_ACCESS_KEY = ""
|
|
AWS_REGION_NAME = ""
|
|
```
|
|
|
|
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
success_callback: ["dynamodb"]
|
|
dynamodb_table_name: your-table-name
|
|
```
|
|
|
|
**Step 3**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
```shell
|
|
litellm --config config.yaml --debug
|
|
```
|
|
|
|
Test Request
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "Azure OpenAI GPT-4 East",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
Your logs should be available on DynamoDB
|
|
|
|
#### Data Logged to DynamoDB /chat/completions
|
|
|
|
```json
|
|
{
|
|
"id": {
|
|
"S": "chatcmpl-8W15J4480a3fAQ1yQaMgtsKJAicen"
|
|
},
|
|
"call_type": {
|
|
"S": "acompletion"
|
|
},
|
|
"endTime": {
|
|
"S": "2023-12-15 17:25:58.424118"
|
|
},
|
|
"messages": {
|
|
"S": "[{'role': 'user', 'content': 'This is a test'}]"
|
|
},
|
|
"metadata": {
|
|
"S": "{}"
|
|
},
|
|
"model": {
|
|
"S": "gpt-3.5-turbo"
|
|
},
|
|
"modelParameters": {
|
|
"S": "{'temperature': 0.7, 'max_tokens': 100, 'user': 'ishaan-2'}"
|
|
},
|
|
"response": {
|
|
"S": "ModelResponse(id='chatcmpl-8W15J4480a3fAQ1yQaMgtsKJAicen', choices=[Choices(finish_reason='stop', index=0, message=Message(content='Great! What can I assist you with?', role='assistant'))], created=1702641357, model='gpt-3.5-turbo-0613', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=9, prompt_tokens=11, total_tokens=20))"
|
|
},
|
|
"startTime": {
|
|
"S": "2023-12-15 17:25:56.047035"
|
|
},
|
|
"usage": {
|
|
"S": "Usage(completion_tokens=9, prompt_tokens=11, total_tokens=20)"
|
|
},
|
|
"user": {
|
|
"S": "ishaan-2"
|
|
}
|
|
}
|
|
```
|
|
|
|
#### Data logged to DynamoDB /embeddings
|
|
|
|
```json
|
|
{
|
|
"id": {
|
|
"S": "4dec8d4d-4817-472d-9fc6-c7a6153eb2ca"
|
|
},
|
|
"call_type": {
|
|
"S": "aembedding"
|
|
},
|
|
"endTime": {
|
|
"S": "2023-12-15 17:25:59.890261"
|
|
},
|
|
"messages": {
|
|
"S": "['hi']"
|
|
},
|
|
"metadata": {
|
|
"S": "{}"
|
|
},
|
|
"model": {
|
|
"S": "text-embedding-ada-002"
|
|
},
|
|
"modelParameters": {
|
|
"S": "{'user': 'ishaan-2'}"
|
|
},
|
|
"response": {
|
|
"S": "EmbeddingResponse(model='text-embedding-ada-002-v2', data=[{'embedding': [-0.03503197431564331, -0.020601635798811913, -0.015375726856291294,
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
|
|
|
|
## Logging Proxy Input/Output - Sentry
|
|
|
|
If api calls fail (llm/database) you can log those to Sentry:
|
|
|
|
**Step 1** Install Sentry
|
|
```shell
|
|
pip install --upgrade sentry-sdk
|
|
```
|
|
|
|
**Step 2**: Save your Sentry_DSN and add `litellm_settings`: `failure_callback`
|
|
```shell
|
|
export SENTRY_DSN="your-sentry-dsn"
|
|
```
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
# other settings
|
|
failure_callback: ["sentry"]
|
|
general_settings:
|
|
database_url: "my-bad-url" # set a fake url to trigger a sentry exception
|
|
```
|
|
|
|
**Step 3**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
```shell
|
|
litellm --config config.yaml --debug
|
|
```
|
|
|
|
Test Request
|
|
```
|
|
litellm --test
|
|
```
|
|
|
|
## Logging Proxy Input/Output Athina
|
|
|
|
[Athina](https://athina.ai/) allows you to log LLM Input/Output for monitoring, analytics, and observability.
|
|
|
|
We will use the `--config` to set `litellm.success_callback = ["athina"]` this will log all successfull LLM calls to athina
|
|
|
|
**Step 1** Set Athina API key
|
|
|
|
```shell
|
|
ATHINA_API_KEY = "your-athina-api-key"
|
|
```
|
|
|
|
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
success_callback: ["athina"]
|
|
```
|
|
|
|
**Step 3**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
```shell
|
|
litellm --config config.yaml --debug
|
|
```
|
|
|
|
Test Request
|
|
```
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "which llm are you"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
## (BETA) Moderation with Azure Content Safety
|
|
|
|
[Azure Content-Safety](https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety) is a Microsoft Azure service that provides content moderation APIs to detect potential offensive, harmful, or risky content in text.
|
|
|
|
We will use the `--config` to set `litellm.success_callback = ["azure_content_safety"]` this will moderate all LLM calls using Azure Content Safety.
|
|
|
|
**Step 0** Deploy Azure Content Safety
|
|
|
|
Deploy an Azure Content-Safety instance from the Azure Portal and get the `endpoint` and `key`.
|
|
|
|
**Step 1** Set Athina API key
|
|
|
|
```shell
|
|
AZURE_CONTENT_SAFETY_KEY = "<your-azure-content-safety-key>"
|
|
```
|
|
|
|
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
callbacks: ["azure_content_safety"]
|
|
azure_content_safety_params:
|
|
endpoint: "<your-azure-content-safety-endpoint>"
|
|
key: "os.environ/AZURE_CONTENT_SAFETY_KEY"
|
|
```
|
|
|
|
**Step 3**: Start the proxy, make a test request
|
|
|
|
Start proxy
|
|
```shell
|
|
litellm --config config.yaml --debug
|
|
```
|
|
|
|
Test Request
|
|
```
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "Hi, how are you?"
|
|
}
|
|
]
|
|
}'
|
|
```
|
|
|
|
An HTTP 400 error will be returned if the content is detected with a value greater than the threshold set in the `config.yaml`.
|
|
The details of the response will describe :
|
|
- The `source` : input text or llm generated text
|
|
- The `category` : the category of the content that triggered the moderation
|
|
- The `severity` : the severity from 0 to 10
|
|
|
|
**Step 4**: Customizing Azure Content Safety Thresholds
|
|
|
|
You can customize the thresholds for each category by setting the `thresholds` in the `config.yaml`
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
litellm_settings:
|
|
callbacks: ["azure_content_safety"]
|
|
azure_content_safety_params:
|
|
endpoint: "<your-azure-content-safety-endpoint>"
|
|
key: "os.environ/AZURE_CONTENT_SAFETY_KEY"
|
|
thresholds:
|
|
Hate: 6
|
|
SelfHarm: 8
|
|
Sexual: 6
|
|
Violence: 4
|
|
```
|
|
|
|
:::info
|
|
`thresholds` are not required by default, but you can tune the values to your needs.
|
|
Default values is `4` for all categories
|
|
::: |