litellm/cookbook/llm-ab-test-server/readme.md
2023-08-25 21:44:13 -07:00

171 lines
5 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<h1 align="center">
🚅 LiteLLM - A/B Testing LLMs in Production
</h1>
<p align="center">
<p align="center">Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, Azure OpenAI etc.]</p>
</p>
<h4 align="center">
<a href="https://pypi.org/project/litellm/" target="_blank">
<img src="https://img.shields.io/pypi/v/litellm.svg" alt="PyPI Version">
</a>
<a href="https://pypi.org/project/litellm/0.1.1/" target="_blank">
<img src="https://img.shields.io/badge/stable%20version-v0.1.424-blue?color=green&link=https://pypi.org/project/litellm/0.1.1/" alt="Stable Version">
</a>
<a href="https://dl.circleci.com/status-badge/redirect/gh/BerriAI/litellm/tree/main" target="_blank">
<img src="https://dl.circleci.com/status-badge/img/gh/BerriAI/litellm/tree/main.svg?style=svg" alt="CircleCI">
</a>
<img src="https://img.shields.io/pypi/dm/litellm" alt="Downloads">
<a href="https://discord.gg/wuPM9dRgDw" target="_blank">
<img src="https://dcbadge.vercel.app/api/server/wuPM9dRgDw?style=flat">
</a>
</h4>
<h4 align="center">
<a href="https://docs.litellm.ai/docs/completion/supported" target="_blank">100+ Supported Models</a> |
<a href="https://docs.litellm.ai/docs/" target="_blank">Docs</a> |
<a href="https://litellm.ai/playground" target="_blank">Demo Website</a>
</h4>
LiteLLM allows you to call 100+ LLMs using completion
## This template server allows you to define LLMs with their A/B test ratios
```python
llm_dict = {
"gpt-4": 0.2,
"together_ai/togethercomputer/llama-2-70b-chat": 0.4,
"claude-2": 0.2,
"claude-1.2": 0.2
}
```
All models defined can be called with the same Input/Output format using litellm `completion`
```python
from litellm import completion
# SET API KEYS in .env
# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)
# cohere call
response = completion(model="command-nightly", messages=messages)
# anthropic
response = completion(model="claude-2", messages=messages)
```
This server allows you to view responses, costs and latency on your LiteLLM dashboard
### LiteLLM Client UI
![pika-1693023669579-1x](https://github.com/BerriAI/litellm/assets/29436595/86633e2f-eda0-4939-a588-84e4c100f36a)
# Using LiteLLM A/B Testing Server
## Setup
### Install LiteLLM
```
pip install litellm
```
Stable version
```
pip install litellm==0.1.424
```
### Clone LiteLLM Git Repo
```
git clone https://github.com/BerriAI/litellm/
```
### Navigate to LiteLLM-A/B Test Server
```
cd litellm/cookbook/llm-ab-test-server
```
### Run the Server
```
python3 main.py
```
### Set your LLM Configs
Set your LLMs and LLM weights you want to run A/B testing with
In main.py set your selected LLMs you want to AB test in `llm_dict`
You can A/B test more than 100+ LLMs using LiteLLM https://docs.litellm.ai/docs/completion/supported
```python
llm_dict = {
"gpt-4": 0.2,
"together_ai/togethercomputer/llama-2-70b-chat": 0.4,
"claude-2": 0.2,
"claude-1.2": 0.2
}
```
#### Setting your API Keys
Set your LLM API keys in a .env file in the directory or set them as `os.environ` variables.
See https://docs.litellm.ai/docs/completion/supported for the format of API keys
LiteLLM generalizes api keys to follow the following format
`PROVIDER_API_KEY`
## Making Requests to the LiteLLM Server Locally
The server follows the Input/Output format set by the OpenAI Chat Completions API
Here is an example request made the LiteLLM Server
### Python
```python
import requests
import json
url = "http://localhost:5000/chat/completions"
payload = json.dumps({
"messages": [
{
"content": "who is CTO of litellm",
"role": "user"
}
]
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
```
### Curl Command
```
curl --location 'http://localhost:5000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"messages": [
{
"content": "who is CTO of litellm",
"role": "user"
}
]
}
'
```
## Viewing Logs
After running your first `completion()` call litellm autogenerates a new logs dashboard for you. Link to your Logs dashboard is generated in the terminal / console.
Example Terminal Output with Log Dashboard
<img width="1280" alt="Screenshot 2023-08-25 at 8 53 27 PM" src="https://github.com/BerriAI/litellm/assets/29436595/8f4cc218-a991-4988-a05c-c8e508da5d18">
# support / talk with founders
- [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
- [Community Discord 💭](https://discord.gg/wuPM9dRgDw)
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai
# why did we build this
- **Need for simplicity**: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere