litellm/docs/my-website/docs/embedding/supported_embedding.md
Krish Dholakia c03e5da41f
LiteLLM Minor Fixes & Improvements (10/24/2024) (#6421)
* fix(utils.py): support passing dynamic api base to validate_environment

Returns True if just api base is required and api base is passed

* fix(litellm_pre_call_utils.py): feature flag sending client headers to llm api

Fixes https://github.com/BerriAI/litellm/issues/6410

* fix(anthropic/chat/transformation.py): return correct error message

* fix(http_handler.py): add error response text in places where we expect it

* fix(factory.py): handle base case of no non-system messages to bedrock

Fixes https://github.com/BerriAI/litellm/issues/6411

* feat(cohere/embed): Support cohere image embeddings

Closes https://github.com/BerriAI/litellm/issues/6413

* fix(__init__.py): fix linting error

* docs(supported_embedding.md): add image embedding example to docs

* feat(cohere/embed): use cohere embedding returned usage for cost calc

* build(model_prices_and_context_window.json): add embed-english-v3.0 details (image cost + 'supports_image_input' flag)

* fix(cohere_transformation.py): fix linting error

* test(test_proxy_server.py): cleanup test

* test: cleanup test

* fix: fix linting errors
2024-10-25 15:55:56 -07:00

512 lines
No EOL
16 KiB
Markdown

import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Embedding Models
## Quick Start
```python
from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding(model='text-embedding-ada-002', input=["good morning from litellm"])
```
## Proxy Usage
**NOTE**
For `vertex_ai`,
```bash
export GOOGLE_APPLICATION_CREDENTIALS="absolute/path/to/service_account.json"
```
### Add model to config
```yaml
model_list:
- model_name: textembedding-gecko
litellm_params:
model: vertex_ai/textembedding-gecko
general_settings:
master_key: sk-1234
```
### Start proxy
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
### Test
<Tabs>
<TabItem value="curl" label="Curl">
```bash
curl --location 'http://0.0.0.0:4000/embeddings' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{"input": ["Academia.edu uses"], "model": "textembedding-gecko", "encoding_format": "base64"}'
```
</TabItem>
<TabItem value="openai" label="OpenAI (python)">
```python
from openai import OpenAI
client = OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
client.embeddings.create(
model="textembedding-gecko",
input="The food was delicious and the waiter...",
encoding_format="float"
)
```
</TabItem>
<TabItem value="langchain" label="Langchain Embeddings">
```python
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="textembedding-gecko", openai_api_base="http://0.0.0.0:4000", openai_api_key="sk-1234")
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(f"VERTEX AI EMBEDDINGS")
print(query_result[:5])
```
</TabItem>
</Tabs>
## Image Embeddings
For models that support image embeddings, you can pass in a base64 encoded image string to the `input` param.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import embedding
import os
# set your api key
os.environ["COHERE_API_KEY"] = ""
response = embedding(model="cohere/embed-english-v3.0", input=["<base64 encoded image>"])
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: cohere-embed
litellm_params:
model: cohere/embed-english-v3.0
api_key: os.environ/COHERE_API_KEY
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
```bash
curl -X POST 'http://0.0.0.0:4000/v1/embeddings' \
-H 'Authorization: Bearer sk-54d77cd67b9febbb' \
-H 'Content-Type: application/json' \
-d '{
"model": "cohere/embed-english-v3.0",
"input": ["<base64 encoded image>"]
}'
```
</TabItem>
</Tabs>
## Input Params for `litellm.embedding()`
:::info
Any non-openai params, will be treated as provider-specific params, and sent in the request body as kwargs to the provider.
[**See Reserved Params**](https://github.com/BerriAI/litellm/blob/2f5f85cb52f36448d1f8bbfbd3b8af8167d0c4c8/litellm/main.py#L3130)
[**See Example**](#example)
:::
### Required Fields
- `model`: *string* - ID of the model to use. `model='text-embedding-ada-002'`
- `input`: *string or array* - Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for text-embedding-ada-002), cannot be an empty string, and any array must be 2048 dimensions or less.
```python
input=["good morning from litellm"]
```
### Optional LiteLLM Fields
- `user`: *string (optional)* A unique identifier representing your end-user,
- `dimensions`: *integer (Optional)* The number of dimensions the resulting output embeddings should have. Only supported in OpenAI/Azure text-embedding-3 and later models.
- `encoding_format`: *string (Optional)* The format to return the embeddings in. Can be either `"float"` or `"base64"`. Defaults to `encoding_format="float"`
- `timeout`: *integer (Optional)* - The maximum time, in seconds, to wait for the API to respond. Defaults to 600 seconds (10 minutes).
- `api_base`: *string (optional)* - The api endpoint you want to call the model with
- `api_version`: *string (optional)* - (Azure-specific) the api version for the call
- `api_key`: *string (optional)* - The API key to authenticate and authorize requests. If not provided, the default API key is used.
- `api_type`: *string (optional)* - The type of API to use.
### Output from `litellm.embedding()`
```json
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [
-0.0022326677571982145,
0.010749882087111473,
...
...
...
]
}
],
"model": "text-embedding-ada-002-v2",
"usage": {
"prompt_tokens": 10,
"total_tokens": 10
}
}
```
## OpenAI Embedding Models
### Usage
```python
from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding(
model="text-embedding-3-small",
input=["good morning from litellm", "this is another item"],
metadata={"anything": "good day"},
dimensions=5 # Only supported in text-embedding-3 and later models.
)
```
| Model Name | Function Call | Required OS Variables |
|----------------------|---------------------------------------------|--------------------------------------|
| text-embedding-3-small | `embedding('text-embedding-3-small', input)` | `os.environ['OPENAI_API_KEY']` |
| text-embedding-3-large | `embedding('text-embedding-3-large', input)` | `os.environ['OPENAI_API_KEY']` |
| text-embedding-ada-002 | `embedding('text-embedding-ada-002', input)` | `os.environ['OPENAI_API_KEY']` |
## Azure OpenAI Embedding Models
### API keys
This can be set as env variables or passed as **params to litellm.embedding()**
```python
import os
os.environ['AZURE_API_KEY'] =
os.environ['AZURE_API_BASE'] =
os.environ['AZURE_API_VERSION'] =
```
### Usage
```python
from litellm import embedding
response = embedding(
model="azure/<your deployment name>",
input=["good morning from litellm"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
)
print(response)
```
| Model Name | Function Call |
|----------------------|---------------------------------------------|
| text-embedding-ada-002 | `embedding(model="azure/<your deployment name>", input=input)` |
h/t to [Mikko](https://www.linkedin.com/in/mikkolehtimaki/) for this integration
## OpenAI Compatible Embedding Models
Use this for calling `/embedding` endpoints on OpenAI Compatible Servers, example https://github.com/xorbitsai/inference
**Note add `openai/` prefix to model so litellm knows to route to OpenAI**
### Usage
```python
from litellm import embedding
response = embedding(
model = "openai/<your-llm-name>", # add `openai/` prefix to model so litellm knows to route to OpenAI
api_base="http://0.0.0.0:4000/" # set API Base of your Custom OpenAI Endpoint
input=["good morning from litellm"]
)
```
## Bedrock Embedding
### API keys
This can be set as env variables or passed as **params to litellm.embedding()**
```python
import os
os.environ["AWS_ACCESS_KEY_ID"] = "" # Access key
os.environ["AWS_SECRET_ACCESS_KEY"] = "" # Secret access key
os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
```
### Usage
```python
from litellm import embedding
response = embedding(
model="amazon.titan-embed-text-v1",
input=["good morning from litellm"],
)
print(response)
```
| Model Name | Function Call |
|----------------------|---------------------------------------------|
| Titan Embeddings - G1 | `embedding(model="amazon.titan-embed-text-v1", input=input)` |
| Cohere Embeddings - English | `embedding(model="cohere.embed-english-v3", input=input)` |
| Cohere Embeddings - Multilingual | `embedding(model="cohere.embed-multilingual-v3", input=input)` |
## Cohere Embedding Models
https://docs.cohere.com/reference/embed
### Usage
```python
from litellm import embedding
os.environ["COHERE_API_KEY"] = "cohere key"
# cohere call
response = embedding(
model="embed-english-v3.0",
input=["good morning from litellm", "this is another item"],
input_type="search_document" # optional param for v3 llms
)
```
| Model Name | Function Call |
|--------------------------|--------------------------------------------------------------|
| embed-english-v3.0 | `embedding(model="embed-english-v3.0", input=["good morning from litellm", "this is another item"])` |
| embed-english-light-v3.0 | `embedding(model="embed-english-light-v3.0", input=["good morning from litellm", "this is another item"])` |
| embed-multilingual-v3.0 | `embedding(model="embed-multilingual-v3.0", input=["good morning from litellm", "this is another item"])` |
| embed-multilingual-light-v3.0 | `embedding(model="embed-multilingual-light-v3.0", input=["good morning from litellm", "this is another item"])` |
| embed-english-v2.0 | `embedding(model="embed-english-v2.0", input=["good morning from litellm", "this is another item"])` |
| embed-english-light-v2.0 | `embedding(model="embed-english-light-v2.0", input=["good morning from litellm", "this is another item"])` |
| embed-multilingual-v2.0 | `embedding(model="embed-multilingual-v2.0", input=["good morning from litellm", "this is another item"])` |
## HuggingFace Embedding Models
LiteLLM supports all Feature-Extraction + Sentence Similarity Embedding models: https://huggingface.co/models?pipeline_tag=feature-extraction
### Usage
```python
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"]
)
```
### Usage - Set input_type
LiteLLM infers input type (feature-extraction or sentence-similarity) by making a GET request to the api base.
Override this, by setting the `input_type` yourself.
```python
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm", "you are a good bot"],
api_base = "https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud",
input_type="sentence-similarity"
)
```
### Usage - Custom API Base
```python
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"],
api_base = "https://p69xlsj6rpno5drq.us-east-1.aws.endpoints.huggingface.cloud"
)
```
| Model Name | Function Call | Required OS Variables |
|-----------------------|--------------------------------------------------------------|-------------------------------------------------|
| microsoft/codebert-base | `embedding('huggingface/microsoft/codebert-base', input=input)` | `os.environ['HUGGINGFACE_API_KEY']` |
| BAAI/bge-large-zh | `embedding('huggingface/BAAI/bge-large-zh', input=input)` | `os.environ['HUGGINGFACE_API_KEY']` |
| any-hf-embedding-model | `embedding('huggingface/hf-embedding-model', input=input)` | `os.environ['HUGGINGFACE_API_KEY']` |
## Mistral AI Embedding Models
All models listed here https://docs.mistral.ai/platform/endpoints are supported
### Usage
```python
from litellm import embedding
import os
os.environ['MISTRAL_API_KEY'] = ""
response = embedding(
model="mistral/mistral-embed",
input=["good morning from litellm"],
)
print(response)
```
| Model Name | Function Call |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mistral-embed | `embedding(model="mistral/mistral-embed", input)` |
## Vertex AI Embedding Models
### Usage - Embedding
```python
import litellm
from litellm import embedding
litellm.vertex_project = "hardy-device-38811" # Your Project ID
litellm.vertex_location = "us-central1" # proj location
response = embedding(
model="vertex_ai/textembedding-gecko",
input=["good morning from litellm"],
)
print(response)
```
## Supported Models
All models listed [here](https://github.com/BerriAI/litellm/blob/57f37f743886a0249f630a6792d49dffc2c5d9b7/model_prices_and_context_window.json#L835) are supported
| Model Name | Function Call |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| textembedding-gecko | `embedding(model="vertex_ai/textembedding-gecko", input)` |
| textembedding-gecko-multilingual | `embedding(model="vertex_ai/textembedding-gecko-multilingual", input)` |
| textembedding-gecko-multilingual@001 | `embedding(model="vertex_ai/textembedding-gecko-multilingual@001", input)` |
| textembedding-gecko@001 | `embedding(model="vertex_ai/textembedding-gecko@001", input)` |
| textembedding-gecko@003 | `embedding(model="vertex_ai/textembedding-gecko@003", input)` |
| text-embedding-preview-0409 | `embedding(model="vertex_ai/text-embedding-preview-0409", input)` |
| text-multilingual-embedding-preview-0409 | `embedding(model="vertex_ai/text-multilingual-embedding-preview-0409", input)` |
## Voyage AI Embedding Models
### Usage - Embedding
```python
from litellm import embedding
import os
os.environ['VOYAGE_API_KEY'] = ""
response = embedding(
model="voyage/voyage-01",
input=["good morning from litellm"],
)
print(response)
```
## Supported Models
All models listed here https://docs.voyageai.com/embeddings/#models-and-specifics are supported
| Model Name | Function Call |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| voyage-01 | `embedding(model="voyage/voyage-01", input)` |
| voyage-lite-01 | `embedding(model="voyage/voyage-lite-01", input)` |
| voyage-lite-01-instruct | `embedding(model="voyage/voyage-lite-01-instruct", input)` |
## Provider-specific Params
:::info
Any non-openai params, will be treated as provider-specific params, and sent in the request body as kwargs to the provider.
[**See Reserved Params**](https://github.com/BerriAI/litellm/blob/2f5f85cb52f36448d1f8bbfbd3b8af8167d0c4c8/litellm/main.py#L3130)
:::
### **Example**
Cohere v3 Models have a required parameter: `input_type`, it can be one of the following four values:
- `input_type="search_document"`: (default) Use this for texts (documents) you want to store in your vector database
- `input_type="search_query"`: Use this for search queries to find the most relevant documents in your vector database
- `input_type="classification"`: Use this if you use the embeddings as an input for a classification system
- `input_type="clustering"`: Use this if you use the embeddings for text clustering
https://txt.cohere.com/introducing-embed-v3/
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import embedding
os.environ["COHERE_API_KEY"] = "cohere key"
# cohere call
response = embedding(
model="embed-english-v3.0",
input=["good morning from litellm", "this is another item"],
input_type="search_document" # 👈 PROVIDER-SPECIFIC PARAM
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
**via config**
```yaml
model_list:
- model_name: "cohere-embed"
litellm_params:
model: embed-english-v3.0
input_type: search_document # 👈 PROVIDER-SPECIFIC PARAM
```
**via request**
```bash
curl -X POST 'http://0.0.0.0:4000/v1/embeddings' \
-H 'Authorization: Bearer sk-54d77cd67b9febbb' \
-H 'Content-Type: application/json' \
-d '{
"model": "cohere-embed",
"input": ["Are you authorized to work in United States of America?"],
"input_type": "search_document" # 👈 PROVIDER-SPECIFIC PARAM
}'
```
</TabItem>
</Tabs>