litellm/docs/my-website/docs/pass_through/google_ai_studio.md
Ishaan Jaff 7bb5304323
(docs) simplify left nav names + use a section for making llm requests (#6799)
* fix emojis on docs

* add section on making LLM requests

* docs simplify sidebar
2024-11-18 12:53:43 -08:00

5.1 KiB

Google AI Studio SDK

Pass-through endpoints for Google AI Studio - call provider-specific endpoint, in native format (no translation).

Just replace https://generativelanguage.googleapis.com with LITELLM_PROXY_BASE_URL/gemini 🚀

Example Usage

http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-anything' \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
        "parts":[{
          "text": "The quick brown fox jumps over the lazy dog."
          }]
        }]
}'

Supports ALL Google AI Studio Endpoints (including streaming).

See All Google AI Studio Endpoints

Quick Start

Let's call the Gemini /countTokens endpoint

  1. Add Gemini API Key to your environment
export GEMINI_API_KEY=""
  1. Start LiteLLM Proxy
litellm

# RUNNING on http://0.0.0.0:4000
  1. Test it!

Let's call the Google AI Studio token counting endpoint

http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=anything' \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
        "parts":[{
          "text": "The quick brown fox jumps over the lazy dog."
          }]
        }]
}'

Examples

Anything after http://0.0.0.0:4000/gemini is treated as a provider-specific route, and handled accordingly.

Key Changes:

Original Endpoint Replace With
https://generativelanguage.googleapis.com http://0.0.0.0:4000/gemini (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000")
key=$GOOGLE_API_KEY key=anything (use key=LITELLM_VIRTUAL_KEY if Virtual Keys are setup on proxy)

Example 1: Counting tokens

LiteLLM Proxy Call

curl http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=anything \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{
          "text": "The quick brown fox jumps over the lazy dog."
          }],
        }],
      }'

Direct Google AI Studio Call

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{
          "text": "The quick brown fox jumps over the lazy dog."
          }],
        }],
      }'

Example 2: Generate content

LiteLLM Proxy Call

curl "http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:generateContent?key=anything" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{"text": "Write a story about a magic backpack."}]
        }]
       }' 2> /dev/null

Direct Google AI Studio Call

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{"text": "Write a story about a magic backpack."}]
        }]
       }' 2> /dev/null

Example 3: Caching

curl -X POST "http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash-001:generateContent?key=anything" \
-H 'Content-Type: application/json' \
-d '{
      "contents": [
        {
          "parts":[{
            "text": "Please summarize this transcript"
          }],
          "role": "user"
        },
      ],
      "cachedContent": "'$CACHE_NAME'"
    }'

Direct Google AI Studio Call

curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-001:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
      "contents": [
        {
          "parts":[{
            "text": "Please summarize this transcript"
          }],
          "role": "user"
        },
      ],
      "cachedContent": "'$CACHE_NAME'"
    }'

Advanced - Use with Virtual Keys

Pre-requisites

Use this, to avoid giving developers the raw Google AI Studio key, but still letting them use Google AI Studio endpoints.

Usage

  1. Setup environment
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
export GEMINI_API_KEY=""
litellm

# RUNNING on http://0.0.0.0:4000
  1. Generate virtual key
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'

Expected Response

{
    ...
    "key": "sk-1234ewknldferwedojwojw"
}
  1. Test it!
http://0.0.0.0:4000/gemini/v1beta/models/gemini-1.5-flash:countTokens?key=sk-1234ewknldferwedojwojw' \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
        "parts":[{
          "text": "The quick brown fox jumps over the lazy dog."
          }]
        }]
}'