litellm/docs/my-website/docs/exception_mapping.md
2024-05-13 18:17:02 -07:00

11 KiB

Exception Mapping

LiteLLM maps exceptions across all providers to their OpenAI counterparts.

Status Code Error Type
400 BadRequestError
401 AuthenticationError
403 PermissionDeniedError
404 NotFoundError
422 UnprocessableEntityError
429 RateLimitError
>=500 InternalServerError
N/A ContextWindowExceededError
400 ContentPolicyViolationError
500 APIConnectionError

Base case we return APIConnectionError

All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.

For all cases, the exception returned inherits from the original OpenAI Exception but contains 3 additional attributes:

  • status_code - the http status code of the exception
  • message - the error message
  • llm_provider - the provider raising the exception

Usage

import litellm
import openai

try:
    response = litellm.completion(
                model="gpt-4",
                messages=[
                    {
                        "role": "user",
                        "content": "hello, write a 20 pageg essay"
                    }
                ],
                timeout=0.01, # this will raise a timeout exception
            )
except openai.APITimeoutError as e:
    print("Passed: Raised correct exception. Got openai.APITimeoutError\nGood Job", e)
    print(type(e))
    pass

Usage - Catching Streaming Exceptions

import litellm
try:
    response = litellm.completion(
        model="gpt-3.5-turbo",
        messages=[
            {
                "role": "user",
                "content": "hello, write a 20 pg essay"
            }
        ],
        timeout=0.0001, # this will raise an exception
        stream=True,
    )
    for chunk in response:
        print(chunk)
except openai.APITimeoutError as e:
    print("Passed: Raised correct exception. Got openai.APITimeoutError\nGood Job", e)
    print(type(e))
    pass
except Exception as e:
    print(f"Did not raise error `openai.APITimeoutError`. Instead raised error type: {type(e)}, Error: {e}")

Usage - Should you retry exception?

import litellm
import openai

try:
    response = litellm.completion(
                model="gpt-4",
                messages=[
                    {
                        "role": "user",
                        "content": "hello, write a 20 pageg essay"
                    }
                ],
                timeout=0.01, # this will raise a timeout exception
            )
except openai.APITimeoutError as e:
    should_retry = litellm._should_retry(e.status_code)
    print(f"should_retry: {should_retry}")

Details

To see how it's implemented - check out the code

Create an issue or make a PR if you want to improve the exception mapping.

Note For OpenAI and Azure we return the original exception (since they're of the OpenAI Error type). But we add the 'llm_provider' attribute to them. See code

Custom mapping list

Base case - we return litellm.APIConnectionError exception (inherits from openai's APIConnectionError exception).

custom_llm_provider Timeout ContextWindowExceededError BadRequestError NotFoundError ContentPolicyViolationError AuthenticationError APIError RateLimitError ServiceUnavailableError PermissionDeniedError UnprocessableEntityError
openai
watsonx
text-completion-openai
custom_openai
openai_compatible_providers
anthropic
replicate
bedrock
sagemaker
vertex_ai
palm
gemini
cloudflare
cohere
cohere_chat
huggingface
ai21
nlp_cloud
together_ai
aleph_alpha
ollama
ollama_chat
vllm
azure
  • "✓" indicates that the specified custom_llm_provider can raise the corresponding exception.
  • Empty cells indicate the lack of association or that the provider does not raise that particular exception type as indicated by the function.

For a deeper understanding of these exceptions, you can check out this implementation for additional insights.

The ContextWindowExceededError is a sub-class of InvalidRequestError. It was introduced to provide more granularity for exception-handling scenarios. Please refer to this issue to learn more.

Contributions to improve exception mapping are welcome