litellm/docs/my-website/docs/index.md
2023-10-07 15:38:36 -07:00

6.9 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

LiteLLM - Getting Started

https://github.com/BerriAI/litellm

import QuickStart from '../src/components/QuickStart.js'

Call 100+ LLMs using the same Input/Output Format

Basic usage

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os

## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

response = completion(
  model="claude-2", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os

# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"

response = completion(
  model="chat-bison", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion 
import os

os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key" 

# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
  model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
  messages=[{ "content": "Hello, how are you?","role": "user"}], 
  api_base="https://my-endpoint.huggingface.cloud"
)

print(response)
from litellm import completion
import os

## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""

# azure call
response = completion(
  "azure/<your_deployment_name>", 
  messages = [{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion

response = completion(
            model="ollama/llama2", 
            messages = [{ "content": "Hello, how are you?","role": "user"}], 
            api_base="http://localhost:11434"
)
from litellm import completion
import os

## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key" 

response = completion(
  model="openrouter/google/palm-2-chat-bison", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
)

Streaming

Set stream=True in the completion args.

from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion
import os

## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

response = completion(
  model="claude-2", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion
import os

# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"

response = completion(
  model="chat-bison", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion 
import os

os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key" 

# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
  model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
  messages=[{ "content": "Hello, how are you?","role": "user"}], 
  api_base="https://my-endpoint.huggingface.cloud",
  stream=True,
)

print(response)
from litellm import completion
import os

## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""

# azure call
response = completion(
  "azure/<your_deployment_name>", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion

response = completion(
            model="ollama/llama2", 
            messages = [{ "content": "Hello, how are you?","role": "user"}], 
            api_base="http://localhost:11434",
            stream=True,
)
from litellm import completion
import os

## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key" 

response = completion(
  model="openrouter/google/palm-2-chat-bison", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)

Exception handling

LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.

from openai.errors import OpenAIError
from litellm import completion

os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try: 
    # some code 
    completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
    print(e)

Calculate Costs, Usage, Latency

Pass the completion response to litellm.completion_cost(completion_response=response) and get the cost

from litellm import completion, completion_cost
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)

cost = completion_cost(completion_response=response)
print("Cost for completion call with gpt-3.5-turbo: ", f"${float(cost):.10f}")

Output

Cost for completion call with gpt-3.5-turbo:  $0.0000775000

Need a dedicated key? Email us @ krrish@berri.ai

More details