litellm/docs/my-website/src/pages/index.md
2024-01-04 11:20:43 +05:30

10 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

LiteLLM - Getting Started

https://github.com/BerriAI/litellm

Call 100+ LLMs using the same Input/Output Format

Basic usage

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os

## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

response = completion(
  model="claude-2", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os

# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"

response = completion(
  model="chat-bison", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion 
import os

os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key" 

# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
  model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
  messages=[{ "content": "Hello, how are you?","role": "user"}], 
  api_base="https://my-endpoint.huggingface.cloud"
)

print(response)
from litellm import completion
import os

## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""

# azure call
response = completion(
  "azure/<your_deployment_name>", 
  messages = [{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion

response = completion(
            model="ollama/llama2", 
            messages = [{ "content": "Hello, how are you?","role": "user"}], 
            api_base="http://localhost:11434"
)
from litellm import completion
import os

## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key" 

response = completion(
  model="openrouter/google/palm-2-chat-bison", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
)

Streaming

Set stream=True in the completion args.

from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion
import os

## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"

response = completion(
  model="claude-2", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion
import os

# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"

response = completion(
  model="chat-bison", 
  messages=[{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion 
import os

os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key" 

# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
  model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
  messages=[{ "content": "Hello, how are you?","role": "user"}], 
  api_base="https://my-endpoint.huggingface.cloud",
  stream=True,
)

print(response)
from litellm import completion
import os

## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""

# azure call
response = completion(
  "azure/<your_deployment_name>", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)
from litellm import completion

response = completion(
            model="ollama/llama2", 
            messages = [{ "content": "Hello, how are you?","role": "user"}], 
            api_base="http://localhost:11434",
            stream=True,
)
from litellm import completion
import os

## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key" 

response = completion(
  model="openrouter/google/palm-2-chat-bison", 
  messages = [{ "content": "Hello, how are you?","role": "user"}],
  stream=True,
)

Exception handling

LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.

from openai.error import OpenAIError
from litellm import completion

os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try: 
    # some code 
    completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
    print(e)

Logging Observability - Log LLM Input/Output (Docs)

LiteLLM exposes pre defined callbacks to send data to Langfuse, LLMonitor, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["langfuse", "llmonitor"] # log input/output to langfuse, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

Calculate Costs, Usage, Latency

Pass the completion response to litellm.completion_cost(completion_response=response) and get the cost

from litellm import completion, completion_cost
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
  model="gpt-3.5-turbo", 
  messages=[{ "content": "Hello, how are you?","role": "user"}]
)

cost = completion_cost(completion_response=response)
print("Cost for completion call with gpt-3.5-turbo: ", f"${float(cost):.10f}")

Output

Cost for completion call with gpt-3.5-turbo:  $0.0000775000

Track Costs, Usage, Latency for streaming

Use a callback function for this - more info on custom callbacks: https://docs.litellm.ai/docs/observability/custom_callback

import litellm

# track_cost_callback 
def track_cost_callback(
    kwargs,                 # kwargs to completion
    completion_response,    # response from completion
    start_time, end_time    # start/end time
):
    try:
        # check if it has collected an entire stream response
        if "complete_streaming_response" in kwargs:
            # for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost 
            completion_response=kwargs["complete_streaming_response"]
            input_text = kwargs["messages"]
            output_text = completion_response["choices"][0]["message"]["content"]
            response_cost = litellm.completion_cost(
                model = kwargs["model"],
                messages = input_text,
                completion=output_text
            )
            print("streaming response_cost", response_cost)
    except:
        pass
# set callback 
litellm.success_callback = [track_cost_callback] # set custom callback function

# litellm.completion() call
response = completion(
    model="gpt-3.5-turbo",
    messages=[
        {
            "role": "user",
            "content": "Hi 👋 - i'm openai"
        }
    ],
    stream=True
)

Need a dedicated key? Email us @ krrish@berri.ai

OpenAI Proxy

Track spend across multiple projects/people

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

📖 Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install litellm[proxy]

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:8000

Step 2: Make ChatCompletions Request to Proxy

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:8000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

More details