litellm/docs/my-website/docs/caching/all_caches.md

394 lines
10 KiB
Markdown

import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Caching - In-Memory, Redis, s3, Redis Semantic Cache, Disk
[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/caching.py)
:::info
Need to use Caching on LiteLLM Proxy Server? Doc here: [Caching Proxy Server](https://docs.litellm.ai/docs/proxy/caching)
:::
## Initialize Cache - In Memory, Redis, s3 Bucket, Redis Semantic, Disk Cache
<Tabs>
<TabItem value="redis" label="redis-cache">
Install redis
```shell
pip install redis
```
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
```python
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache(type="redis", host=<host>, port=<port>, password=<password>)
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
# response1 == response2, response 1 is cached
```
</TabItem>
<TabItem value="s3" label="s3-cache">
Install boto3
```shell
pip install boto3
```
Set AWS environment variables
```shell
AWS_ACCESS_KEY_ID = "AKI*******"
AWS_SECRET_ACCESS_KEY = "WOl*****"
```
```python
import litellm
from litellm import completion
from litellm.caching import Cache
# pass s3-bucket name
litellm.cache = Cache(type="s3", s3_bucket_name="cache-bucket-litellm", s3_region_name="us-west-2")
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
# response1 == response2, response 1 is cached
```
</TabItem>
<TabItem value="redis-sem" label="redis-semantic cache">
Install redis
```shell
pip install redisvl==0.0.7
```
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
```python
import litellm
from litellm import completion
from litellm.caching import Cache
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
print("testing semantic caching")
litellm.cache = Cache(
type="redis-semantic",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
similarity_threshold=0.8, # similarity threshold for cache hits, 0 == no similarity, 1 = exact matches, 0.5 == 50% similarity
redis_semantic_cache_embedding_model="text-embedding-ada-002", # this model is passed to litellm.embedding(), any litellm.embedding() model is supported here
)
response1 = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"response1: {response1}")
random_number = random.randint(1, 100000)
response2 = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"response2: {response1}")
assert response1.id == response2.id
# response1 == response2, response 1 is cached
```
</TabItem>
<TabItem value="in-mem" label="in memory cache">
### Quick Start
```python
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache()
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
caching=True
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
caching=True
)
# response1 == response2, response 1 is cached
```
</TabItem>
<TabItem value="disk" label="disk cache">
### Quick Start
Install diskcache:
```shell
pip install diskcache
```
Then you can use the disk cache as follows.
```python
import litellm
from litellm import completion
from litellm.caching import Cache
litellm.cache = Cache(type="disk")
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
caching=True
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}],
caching=True
)
# response1 == response2, response 1 is cached
```
If you run the code two times, response1 will use the cache from the first run that was stored in a cache file.
</TabItem>
</Tabs>
## Cache Context Manager - Enable, Disable, Update Cache
Use the context manager for easily enabling, disabling & updating the litellm cache
### Enabling Cache
Quick Start Enable
```python
litellm.enable_cache()
```
Advanced Params
```python
litellm.enable_cache(
type: Optional[Literal["local", "redis", "s3", "disk"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"]]
] = ["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"],
**kwargs,
)
```
### Disabling Cache
Switch caching off
```python
litellm.disable_cache()
```
### Updating Cache Params (Redis Host, Port etc)
Update the Cache params
```python
litellm.update_cache(
type: Optional[Literal["local", "redis", "s3", "disk"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"]]
] = ["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"],
**kwargs,
)
```
## Custom Cache Keys:
Define function to return cache key
```python
# this function takes in *args, **kwargs and returns the key you want to use for caching
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
print("key for cache", key)
return key
```
Set your function as litellm.cache.get_cache_key
```python
from litellm.caching import Cache
cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
cache.get_cache_key = custom_get_cache_key # set get_cache_key function for your cache
litellm.cache = cache # set litellm.cache to your cache
```
## How to write custom add/get cache functions
### 1. Init Cache
```python
from litellm.caching import Cache
cache = Cache()
```
### 2. Define custom add/get cache functions
```python
def add_cache(self, result, *args, **kwargs):
your logic
def get_cache(self, *args, **kwargs):
your logic
```
### 3. Point cache add/get functions to your add/get functions
```python
cache.add_cache = add_cache
cache.get_cache = get_cache
```
## Cache Initialization Parameters
```python
def __init__(
self,
type: Optional[Literal["local", "redis", "redis-semantic", "s3", "disk"]] = "local",
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"]]
] = ["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"],
ttl: Optional[float] = None,
default_in_memory_ttl: Optional[float] = None,
# redis cache params
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
namespace: Optional[str] = None,
default_in_redis_ttl: Optional[float] = None,
similarity_threshold: Optional[float] = None,
redis_semantic_cache_use_async=False,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
redis_flush_size=None,
# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,
s3_api_version: Optional[str] = None,
s3_path: Optional[str] = None, # if you wish to save to a specific path
s3_use_ssl: Optional[bool] = True,
s3_verify: Optional[Union[bool, str]] = None,
s3_endpoint_url: Optional[str] = None,
s3_aws_access_key_id: Optional[str] = None,
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,
# disk cache params
disk_cache_dir=None,
**kwargs
):
```
## Logging
Cache hits are logged in success events as `kwarg["cache_hit"]`.
Here's an example of accessing it:
```python
import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion, Cache
# create custom callback for success_events
class MyCustomHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
print(f"Value of Cache hit: {kwargs['cache_hit']"})
async def test_async_completion_azure_caching():
# set custom callback
customHandler_caching = MyCustomHandler()
litellm.callbacks = [customHandler_caching]
# init cache
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
unique_time = time.time()
response1 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1)
print(f"customHandler_caching.states pre-cache hit: {customHandler_caching.states}")
response2 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1) # success callbacks are done in parallel
```