forked from phoenix/litellm-mirror
426 lines
11 KiB
Markdown
426 lines
11 KiB
Markdown
import Image from '@theme/IdealImage';
|
|
import Tabs from '@theme/Tabs';
|
|
import TabItem from '@theme/TabItem';
|
|
|
|
# 🔥 Fallbacks, Retries, Timeouts, Load Balancing
|
|
|
|
Retry call with multiple instances of the same model.
|
|
|
|
If a call fails after num_retries, fall back to another model group.
|
|
|
|
If the error is a context window exceeded error, fall back to a larger model group (if given).
|
|
|
|
[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/router.py)
|
|
|
|
## Quick Start - Load Balancing
|
|
### Step 1 - Set deployments on config
|
|
|
|
**Example config below**. Here requests with `model=gpt-3.5-turbo` will be routed across multiple instances of `azure/gpt-3.5-turbo`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/<your-deployment-name>
|
|
api_base: <your-azure-endpoint>
|
|
api_key: <your-azure-api-key>
|
|
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-ca
|
|
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
|
|
api_key: <your-azure-api-key>
|
|
rpm: 6
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-large
|
|
api_base: https://openai-france-1234.openai.azure.com/
|
|
api_key: <your-azure-api-key>
|
|
rpm: 1440
|
|
```
|
|
|
|
### Step 2: Start Proxy with config
|
|
|
|
```shell
|
|
$ litellm --config /path/to/config.yaml
|
|
```
|
|
|
|
### Step 3: Use proxy - Call a model group [Load Balancing]
|
|
Curl Command
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
}
|
|
'
|
|
```
|
|
|
|
### Usage - Call a specific model deployment
|
|
If you want to call a specific model defined in the `config.yaml`, you can call the `litellm_params: model`
|
|
|
|
In this example it will call `azure/gpt-turbo-small-ca`. Defined in the config on Step 1
|
|
|
|
```bash
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "azure/gpt-turbo-small-ca",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
}
|
|
'
|
|
```
|
|
|
|
## Fallbacks + Retries + Timeouts + Cooldowns
|
|
|
|
**Set via config**
|
|
```yaml
|
|
model_list:
|
|
- model_name: zephyr-beta
|
|
litellm_params:
|
|
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
|
api_base: http://0.0.0.0:8001
|
|
- model_name: zephyr-beta
|
|
litellm_params:
|
|
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
|
api_base: http://0.0.0.0:8002
|
|
- model_name: zephyr-beta
|
|
litellm_params:
|
|
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
|
api_base: http://0.0.0.0:8003
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo
|
|
api_key: <my-openai-key>
|
|
- model_name: gpt-3.5-turbo-16k
|
|
litellm_params:
|
|
model: gpt-3.5-turbo-16k
|
|
api_key: <my-openai-key>
|
|
|
|
litellm_settings:
|
|
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
|
|
request_timeout: 10 # raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
|
|
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
|
|
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
|
|
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
|
|
```
|
|
|
|
**Set dynamically**
|
|
|
|
```bash
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "zephyr-beta",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
"fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
|
|
"context_window_fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
|
|
"num_retries": 2,
|
|
"timeout": 10
|
|
}
|
|
'
|
|
```
|
|
|
|
### Test it!
|
|
|
|
|
|
```bash
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data-raw '{
|
|
"model": "zephyr-beta", # 👈 MODEL NAME to fallback from
|
|
"messages": [
|
|
{"role": "user", "content": "what color is red"}
|
|
],
|
|
"mock_testing_fallbacks": true
|
|
}'
|
|
```
|
|
|
|
## Advanced - Context Window Fallbacks (Pre-Call Checks + Fallbacks)
|
|
|
|
**Before call is made** check if a call is within model context window with **`enable_pre_call_checks: true`**.
|
|
|
|
[**See Code**](https://github.com/BerriAI/litellm/blob/c9e6b05cfb20dfb17272218e2555d6b496c47f6f/litellm/router.py#L2163)
|
|
|
|
**1. Setup config**
|
|
|
|
For azure deployments, set the base model. Pick the base model from [this list](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json), all the azure models start with azure/.
|
|
|
|
|
|
<Tabs>
|
|
<TabItem value="same-group" label="Same Group">
|
|
|
|
Filter older instances of a model (e.g. gpt-3.5-turbo) with smaller context windows
|
|
|
|
```yaml
|
|
router_settings:
|
|
enable_pre_call_checks: true # 1. Enable pre-call checks
|
|
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/chatgpt-v-2
|
|
api_base: os.environ/AZURE_API_BASE
|
|
api_key: os.environ/AZURE_API_KEY
|
|
api_version: "2023-07-01-preview"
|
|
model_info:
|
|
base_model: azure/gpt-4-1106-preview # 2. 👈 (azure-only) SET BASE MODEL
|
|
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo-1106
|
|
api_key: os.environ/OPENAI_API_KEY
|
|
```
|
|
|
|
**2. Start proxy**
|
|
|
|
```bash
|
|
litellm --config /path/to/config.yaml
|
|
|
|
# RUNNING on http://0.0.0.0:4000
|
|
```
|
|
|
|
**3. Test it!**
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
text = "What is the meaning of 42?" * 5000
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(
|
|
model="gpt-3.5-turbo",
|
|
messages = [
|
|
{"role": "system", "content": text},
|
|
{"role": "user", "content": "Who was Alexander?"},
|
|
],
|
|
)
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="different-group" label="Context Window Fallbacks (Different Groups)">
|
|
|
|
Fallback to larger models if current model is too small.
|
|
|
|
```yaml
|
|
router_settings:
|
|
enable_pre_call_checks: true # 1. Enable pre-call checks
|
|
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo-small
|
|
litellm_params:
|
|
model: azure/chatgpt-v-2
|
|
api_base: os.environ/AZURE_API_BASE
|
|
api_key: os.environ/AZURE_API_KEY
|
|
api_version: "2023-07-01-preview"
|
|
model_info:
|
|
base_model: azure/gpt-4-1106-preview # 2. 👈 (azure-only) SET BASE MODEL
|
|
|
|
- model_name: gpt-3.5-turbo-large
|
|
litellm_params:
|
|
model: gpt-3.5-turbo-1106
|
|
api_key: os.environ/OPENAI_API_KEY
|
|
|
|
- model_name: claude-opus
|
|
litellm_params:
|
|
model: claude-3-opus-20240229
|
|
api_key: os.environ/ANTHROPIC_API_KEY
|
|
|
|
litellm_settings:
|
|
context_window_fallbacks: [{"gpt-3.5-turbo-small": ["gpt-3.5-turbo-large", "claude-opus"]}]
|
|
```
|
|
|
|
**2. Start proxy**
|
|
|
|
```bash
|
|
litellm --config /path/to/config.yaml
|
|
|
|
# RUNNING on http://0.0.0.0:4000
|
|
```
|
|
|
|
**3. Test it!**
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
text = "What is the meaning of 42?" * 5000
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(
|
|
model="gpt-3.5-turbo",
|
|
messages = [
|
|
{"role": "system", "content": text},
|
|
{"role": "user", "content": "Who was Alexander?"},
|
|
],
|
|
)
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
</Tabs>
|
|
|
|
|
|
## Advanced - EU-Region Filtering (Pre-Call Checks)
|
|
|
|
**Before call is made** check if a call is within model context window with **`enable_pre_call_checks: true`**.
|
|
|
|
Set 'region_name' of deployment.
|
|
|
|
**Note:** LiteLLM can automatically infer region_name for Vertex AI, Bedrock, and IBM WatsonxAI based on your litellm params. For Azure, set `litellm.enable_preview = True`.
|
|
|
|
**1. Set Config**
|
|
|
|
```yaml
|
|
router_settings:
|
|
enable_pre_call_checks: true # 1. Enable pre-call checks
|
|
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/chatgpt-v-2
|
|
api_base: os.environ/AZURE_API_BASE
|
|
api_key: os.environ/AZURE_API_KEY
|
|
api_version: "2023-07-01-preview"
|
|
region_name: "eu" # 👈 SET EU-REGION
|
|
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: gpt-3.5-turbo-1106
|
|
api_key: os.environ/OPENAI_API_KEY
|
|
|
|
- model_name: gemini-pro
|
|
litellm_params:
|
|
model: vertex_ai/gemini-pro-1.5
|
|
vertex_project: adroit-crow-1234
|
|
vertex_location: us-east1 # 👈 AUTOMATICALLY INFERS 'region_name'
|
|
```
|
|
|
|
**2. Start proxy**
|
|
|
|
```bash
|
|
litellm --config /path/to/config.yaml
|
|
|
|
# RUNNING on http://0.0.0.0:4000
|
|
```
|
|
|
|
**3. Test it!**
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.with_raw_response.create(
|
|
model="gpt-3.5-turbo",
|
|
messages = [{"role": "user", "content": "Who was Alexander?"}]
|
|
)
|
|
|
|
print(response)
|
|
|
|
print(f"response.headers.get('x-litellm-model-api-base')")
|
|
```
|
|
|
|
## Advanced - Custom Timeouts, Stream Timeouts - Per Model
|
|
For each model you can set `timeout` & `stream_timeout` under `litellm_params`
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-eu
|
|
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
|
api_key: <your-key>
|
|
timeout: 0.1 # timeout in (seconds)
|
|
stream_timeout: 0.01 # timeout for stream requests (seconds)
|
|
max_retries: 5
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/gpt-turbo-small-ca
|
|
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
|
|
api_key:
|
|
timeout: 0.1 # timeout in (seconds)
|
|
stream_timeout: 0.01 # timeout for stream requests (seconds)
|
|
max_retries: 5
|
|
|
|
```
|
|
|
|
#### Start Proxy
|
|
```shell
|
|
$ litellm --config /path/to/config.yaml
|
|
```
|
|
|
|
|
|
## Advanced - Setting Dynamic Timeouts - Per Request
|
|
|
|
LiteLLM Proxy supports setting a `timeout` per request
|
|
|
|
**Example Usage**
|
|
<Tabs>
|
|
<TabItem value="Curl" label="Curl Request">
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data-raw '{
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "what color is red"}
|
|
],
|
|
"logit_bias": {12481: 100},
|
|
"timeout": 1
|
|
}'
|
|
```
|
|
</TabItem>
|
|
<TabItem value="openai" label="OpenAI v1.0.0+">
|
|
|
|
```python
|
|
import openai
|
|
|
|
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
response = client.chat.completions.create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{"role": "user", "content": "what color is red"}
|
|
],
|
|
logit_bias={12481: 100},
|
|
timeout=1
|
|
)
|
|
|
|
print(response)
|
|
```
|
|
</TabItem>
|
|
</Tabs>
|