LiteLLM fork
Find a file
2024-02-05 15:00:13 -08:00
.circleci feat(utils.py): support cost tracking for openai/azure image gen models 2024-02-03 17:09:54 -08:00
.github Merge pull request #1602 from ShaunMaher/add_helm_chart 2024-02-05 08:12:58 -08:00
ci_cd (feat) add pre-commit hook to check model_prices_and_context_window.json litellm/model_prices_and_context_window_backup.json 2024-02-05 15:00:13 -08:00
cookbook (chore) notes on how to do a pypi dev release 2024-02-02 12:21:52 -08:00
deploy/charts/litellm-helm Authored a Helm chart for LiteLLM. Added GitHub workflows/actions to build and push the helm chart to the ghcr.io OCI registry. 2024-01-25 11:53:59 +11:00
dist fix: syncing changes 2024-01-12 11:41:40 +05:30
docker Revert "build(Dockerfile): move prisma build to dockerfile" 2024-01-06 09:51:44 +05:30
docs/my-website (docs) Add session_id to Langfuse doc 2024-02-05 15:21:05 -05:00
litellm (fix) fix backup.json 2024-02-05 14:36:07 -08:00
tests feat(utils.py): support cost tracking for openai/azure image gen models 2024-02-03 17:09:54 -08:00
ui Update README.md 2024-02-03 20:54:14 -08:00
.env.example feat: added support for OPENAI_API_BASE 2023-08-28 14:57:34 +02:00
.flake8 chore: list all ignored flake8 rules explicit 2023-12-23 09:07:59 +01:00
.gitattributes ignore ipynbs 2023-08-31 16:58:54 -07:00
.gitignore Merge upstream .gitignore changes 2024-01-30 09:38:54 +11:00
.pre-commit-config.yaml (feat) add pre-commit hook to check model_prices_and_context_window.json litellm/model_prices_and_context_window_backup.json 2024-02-05 15:00:13 -08:00
docker-compose.yml (ci/cd) docker compose up with ui 2024-01-25 17:13:19 -08:00
Dockerfile build(proxy_cli.py): make running gunicorn an optional cli arg 2024-01-29 15:32:34 -08:00
Dockerfile.alpine (fix) alpine Docker image 2024-01-10 22:18:37 +05:30
Dockerfile.database build(proxy_cli.py): make running gunicorn an optional cli arg 2024-01-29 15:32:34 -08:00
entrypoint.sh (ci/cd) set litellm as entrypoint 2024-01-10 15:15:49 +05:30
LICENSE Initial commit 2023-07-26 17:09:52 -07:00
model_prices_and_context_window.json (feat) add pre-commit hook to check model_prices_and_context_window.json litellm/model_prices_and_context_window_backup.json 2024-02-05 15:00:13 -08:00
mypy.ini fix(google_kms.py): support enums for key management system 2023-12-27 13:19:33 +05:30
poetry.lock (chore) bump poetry lock 2024-01-26 10:34:16 -08:00
proxy_server_config.yaml feat(utils.py): support cost tracking for openai/azure image gen models 2024-02-03 17:09:54 -08:00
pyproject.toml bump: version 1.22.3 → 1.22.4 2024-02-05 08:47:10 -08:00
README.md Update README.md 2024-02-03 20:40:10 -08:00
requirements.txt (ui) fix - dependencies 2024-02-02 08:14:09 -08:00
retry_push.sh build(Dockerfile): moves prisma logic to dockerfile 2024-01-06 14:59:10 +05:30
schema.prisma (feat) set user_role for Users 2024-02-03 10:23:50 -08:00
template.yaml Use -function for naming. 2023-11-23 02:09:09 -05:00

🚅 LiteLLM

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, etc.]

OpenAI Proxy Server

PyPI Version CircleCI Y Combinator W23 Whatsapp Discord

LiteLLM manages:

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router

Jump to OpenAI Proxy Docs
Jump to Supported LLM Providers

Usage (Docs)

Important

LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables 
os.environ["OPENAI_API_KEY"] = "your-openai-key" 
os.environ["COHERE_API_KEY"] = "your-cohere-key" 

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Async (Docs)

from litellm import acompletion
import asyncio

async def test_get_response():
    user_message = "Hello, how are you?"
    messages = [{"content": user_message, "role": "user"}]
    response = await acompletion(model="gpt-3.5-turbo", messages=messages)
    return response

response = asyncio.run(test_get_response())
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('claude-2', messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Langfuse, DynamoDB, s3 Buckets, LLMonitor, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["langfuse", "llmonitor"] # log input/output to langfuse, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

OpenAI Proxy - (Docs)

Track spend across multiple projects/people

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

📖 Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:8000

Step 2: Make ChatCompletions Request to Proxy

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:8000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Proxy Key Management (Docs)

Track Spend, Set budgets and create virtual keys for the proxy POST /key/generate

Request

curl 'http://0.0.0.0:8000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai", "team": "core-infra"}}'

Expected Response

{
    "key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
    "expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}

[Beta] Proxy UI (Docs)

A UI to create keys, track spend per key

Code: https://github.com/BerriAI/litellm/tree/main/ui
ui_3

Supported Providers (Docs)

Provider Completion Streaming Async Completion Async Streaming Async Embedding Async Image Generation
openai
azure
aws - sagemaker
aws - bedrock
google - vertex_ai [Gemini]
google - palm
google AI Studio - gemini
mistral ai api
cloudflare AI Workers
cohere
anthropic
huggingface
replicate
together_ai
openrouter
ai21
baseten
vllm
nlp_cloud
aleph alpha
petals
ollama
deepinfra
perplexity-ai
anyscale
voyage ai
xinference [Xorbits Inference]

Read the Docs

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .

Step 4: Submit a PR with your changes! 🚀

  • push your fork to your GitHub repo
  • submit a PR from there

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors