litellm/docs/my-website/docs/providers/gemini.md
2024-01-20 19:13:33 +09:00

2 KiB

Gemini - Google AI Studio

Pre-requisites

  • pip install -q google-generativeai

Gemini-Pro

Sample Usage

from litellm import completion
import os

os.environ['GEMINI_API_KEY'] = ""
response = completion(
    model="gemini/gemini-pro", 
    messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
)

Gemini-Pro-Vision

LiteLLM Supports the following image types passed in url

Sample Usage

import os
import litellm
from dotenv import load_dotenv

# Load the environment variables from .env file
load_dotenv()
os.environ["GEMINI_API_KEY"] = os.getenv('GEMINI_API_KEY')

prompt = 'Describe the image in a few sentences.'
# Note: You can pass here the URL or Path of image directly.
image_url = 'https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg'

# Create the messages payload according to the documentation
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": prompt
            },
            {
                "type": "image_url",
                "image_url": {"url": image_url}
            }
        ]
    }
]

# Make the API call to Gemini model
response = litellm.completion(
    model="gemini/gemini-pro-vision",
    messages=messages,
)

# Extract the response content
content = response.get('choices', [{}])[0].get('message', {}).get('content')

# Print the result
print(content)

Chat Models

Model Name Function Call Required OS Variables
gemini-pro completion('gemini/gemini-pro', messages) os.environ['GEMINI_API_KEY']
gemini-pro-vision completion('gemini/gemini-pro-vision', messages) os.environ['GEMINI_API_KEY']