litellm/docs/my-website/docs/proxy/custom_pricing.md
2024-01-25 09:36:15 -08:00

3.1 KiB

import Image from '@theme/IdealImage';

Custom Pricing - Sagemaker, etc.

Use this to register custom pricing for models.

There's 2 ways to track cost:

  • cost per token
  • cost per second

By default, the response cost is accessible in the logging object via kwargs["response_cost"] on success (sync + async). Learn More

Quick Start

Register custom pricing for sagemaker completion model.

For cost per second pricing, you just need to register input_cost_per_second.

# !pip install boto3 
from litellm import completion, completion_cost 

os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""


def test_completion_sagemaker():
    try:
        print("testing sagemaker")
        response = completion(
            model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
            messages=[{"role": "user", "content": "Hey, how's it going?"}],
            input_cost_per_second=0.000420,
        )
        # Add any assertions here to check the response
        print(response)
        cost = completion_cost(completion_response=response)
        print(cost)
    except Exception as e:
        raise Exception(f"Error occurred: {e}")

Usage with OpenAI Proxy Server

Step 1: Add pricing to config.yaml

model_list:
  - model_name: sagemaker-completion-model
    litellm_params:
      model: sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4
      input_cost_per_second: 0.000420
  - model_name: sagemaker-embedding-model
    litellm_params:
      model: sagemaker/berri-benchmarking-gpt-j-6b-fp16
      input_cost_per_second: 0.000420 

Step 2: Start proxy

litellm /path/to/config.yaml

Step 3: View Spend Logs

<Image img={require('../../img/spend_logs_table.png')} />

Cost Per Token (e.g. Azure)

# !pip install boto3 
from litellm import completion, completion_cost 

## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""


def test_completion_azure_model():
    try:
        print("testing azure custom pricing")
        # azure call
        response = completion(
          model = "azure/<your_deployment_name>", 
          messages = [{ "content": "Hello, how are you?","role": "user"}]
          input_cost_per_token=0.005,
          output_cost_per_token=1,
        )
        # Add any assertions here to check the response
        print(response)
        cost = completion_cost(completion_response=response)
        print(cost)
    except Exception as e:
        raise Exception(f"Error occurred: {e}")

test_completion_azure_model()

Usage with OpenAI Proxy Server

model_list:
  - model_name: azure-model
    litellm_params:
      model: azure/<your_deployment_name>
      api_key: os.environ/AZURE_API_KEY
      api_base: os.environ/AZURE_API_BASE
      api_version: os.envrion/AZURE_API_VERSION
      input_cost_per_token: 0.000421 # 👈 ONLY to track cost per token
      output_cost_per_token: 0.000520 # 👈 ONLY to track cost per token