forked from phoenix/litellm-mirror
478 lines
12 KiB
Markdown
478 lines
12 KiB
Markdown
import Tabs from '@theme/Tabs';
|
|
import TabItem from '@theme/TabItem';
|
|
|
|
# LiteLLM - Getting Started
|
|
|
|
https://github.com/BerriAI/litellm
|
|
|
|
## **Call 100+ LLMs using the OpenAI Input/Output Format**
|
|
|
|
- Translate inputs to provider's `completion`, `embedding`, and `image_generation` endpoints
|
|
- [Consistent output](https://docs.litellm.ai/docs/completion/output), text responses will always be available at `['choices'][0]['message']['content']`
|
|
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - [Router](https://docs.litellm.ai/docs/routing)
|
|
- Track spend & set budgets per project [LiteLLM Proxy Server](https://docs.litellm.ai/docs/simple_proxy)
|
|
|
|
## How to use LiteLLM
|
|
You can use litellm through either:
|
|
1. [LiteLLM Proxy Server](#litellm-proxy-server-llm-gateway) - Server (LLM Gateway) to call 100+ LLMs, load balance, cost tracking across projects
|
|
2. [LiteLLM python SDK](#basic-usage) - Python Client to call 100+ LLMs, load balance, cost tracking
|
|
|
|
### **When to use LiteLLM Proxy Server (LLM Gateway)**
|
|
|
|
:::tip
|
|
|
|
Use LiteLLM Proxy Server if you want a **central service (LLM Gateway) to access multiple LLMs**
|
|
|
|
Typically used by Gen AI Enablement / ML PLatform Teams
|
|
|
|
:::
|
|
|
|
- LiteLLM Proxy gives you a unified interface to access multiple LLMs (100+ LLMs)
|
|
- Track LLM Usage and setup guardrails
|
|
- Customize Logging, Guardrails, Caching per project
|
|
|
|
### **When to use LiteLLM Python SDK**
|
|
|
|
:::tip
|
|
|
|
Use LiteLLM Python SDK if you want to use LiteLLM in your **python code**
|
|
|
|
Typically used by developers building llm projects
|
|
|
|
:::
|
|
|
|
- LiteLLM SDK gives you a unified interface to access multiple LLMs (100+ LLMs)
|
|
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - [Router](https://docs.litellm.ai/docs/routing)
|
|
|
|
## **LiteLLM Python SDK**
|
|
|
|
### Basic usage
|
|
|
|
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/liteLLM_Getting_Started.ipynb">
|
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
|
</a>
|
|
|
|
```shell
|
|
pip install litellm
|
|
```
|
|
|
|
<Tabs>
|
|
<TabItem value="openai" label="OpenAI">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
|
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
<TabItem value="anthropic" label="Anthropic">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
|
|
|
response = completion(
|
|
model="claude-2",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="vertex" label="VertexAI">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
# auth: run 'gcloud auth application-default'
|
|
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
|
|
os.environ["VERTEX_LOCATION"] = "us-central1"
|
|
|
|
response = completion(
|
|
model="chat-bison",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="hugging" label="HuggingFace">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
|
|
|
|
# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
|
|
response = completion(
|
|
model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
|
api_base="https://my-endpoint.huggingface.cloud"
|
|
)
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="azure" label="Azure OpenAI">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["AZURE_API_KEY"] = ""
|
|
os.environ["AZURE_API_BASE"] = ""
|
|
os.environ["AZURE_API_VERSION"] = ""
|
|
|
|
# azure call
|
|
response = completion(
|
|
"azure/<your_deployment_name>",
|
|
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="ollama" label="Ollama">
|
|
|
|
```python
|
|
from litellm import completion
|
|
|
|
response = completion(
|
|
model="ollama/llama2",
|
|
messages = [{ "content": "Hello, how are you?","role": "user"}],
|
|
api_base="http://localhost:11434"
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
<TabItem value="or" label="Openrouter">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key"
|
|
|
|
response = completion(
|
|
model="openrouter/google/palm-2-chat-bison",
|
|
messages = [{ "content": "Hello, how are you?","role": "user"}],
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
</Tabs>
|
|
|
|
### Streaming
|
|
Set `stream=True` in the `completion` args.
|
|
|
|
<Tabs>
|
|
<TabItem value="openai" label="OpenAI">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
|
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
|
stream=True,
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
<TabItem value="anthropic" label="Anthropic">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
|
|
|
|
response = completion(
|
|
model="claude-2",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
|
stream=True,
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="vertex" label="VertexAI">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
# auth: run 'gcloud auth application-default'
|
|
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
|
|
os.environ["VERTEX_LOCATION"] = "us-central1"
|
|
|
|
response = completion(
|
|
model="chat-bison",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
|
stream=True,
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="hugging" label="HuggingFace">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
|
|
|
|
# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
|
|
response = completion(
|
|
model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
|
api_base="https://my-endpoint.huggingface.cloud",
|
|
stream=True,
|
|
)
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="azure" label="Azure OpenAI">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["AZURE_API_KEY"] = ""
|
|
os.environ["AZURE_API_BASE"] = ""
|
|
os.environ["AZURE_API_VERSION"] = ""
|
|
|
|
# azure call
|
|
response = completion(
|
|
"azure/<your_deployment_name>",
|
|
messages = [{ "content": "Hello, how are you?","role": "user"}],
|
|
stream=True,
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem value="ollama" label="Ollama">
|
|
|
|
```python
|
|
from litellm import completion
|
|
|
|
response = completion(
|
|
model="ollama/llama2",
|
|
messages = [{ "content": "Hello, how are you?","role": "user"}],
|
|
api_base="http://localhost:11434",
|
|
stream=True,
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
<TabItem value="or" label="Openrouter">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import os
|
|
|
|
## set ENV variables
|
|
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key"
|
|
|
|
response = completion(
|
|
model="openrouter/google/palm-2-chat-bison",
|
|
messages = [{ "content": "Hello, how are you?","role": "user"}],
|
|
stream=True,
|
|
)
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
</Tabs>
|
|
|
|
### Exception handling
|
|
|
|
LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.
|
|
|
|
```python
|
|
from openai.error import OpenAIError
|
|
from litellm import completion
|
|
|
|
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
|
|
try:
|
|
# some code
|
|
completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
|
|
except OpenAIError as e:
|
|
print(e)
|
|
```
|
|
|
|
### Logging Observability - Log LLM Input/Output ([Docs](https://docs.litellm.ai/docs/observability/callbacks))
|
|
LiteLLM exposes pre defined callbacks to send data to Lunary, Langfuse, Helicone, Promptlayer, Traceloop, Slack
|
|
|
|
```python
|
|
from litellm import completion
|
|
|
|
## set env variables for logging tools
|
|
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
|
|
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
|
|
os.environ["LANGFUSE_SECRET_KEY"] = ""
|
|
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
|
|
|
|
os.environ["OPENAI_API_KEY"]
|
|
|
|
# set callbacks
|
|
litellm.success_callback = ["lunary", "langfuse", "helicone"] # log input/output to lunary, langfuse, supabase, helicone
|
|
|
|
#openai call
|
|
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
|
|
```
|
|
|
|
### Track Costs, Usage, Latency for streaming
|
|
Use a callback function for this - more info on custom callbacks: https://docs.litellm.ai/docs/observability/custom_callback
|
|
|
|
```python
|
|
import litellm
|
|
|
|
# track_cost_callback
|
|
def track_cost_callback(
|
|
kwargs, # kwargs to completion
|
|
completion_response, # response from completion
|
|
start_time, end_time # start/end time
|
|
):
|
|
try:
|
|
response_cost = kwargs.get("response_cost", 0)
|
|
print("streaming response_cost", response_cost)
|
|
except:
|
|
pass
|
|
# set callback
|
|
litellm.success_callback = [track_cost_callback] # set custom callback function
|
|
|
|
# litellm.completion() call
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Hi 👋 - i'm openai"
|
|
}
|
|
],
|
|
stream=True
|
|
)
|
|
```
|
|
|
|
## **LiteLLM Proxy Server (LLM Gateway)**
|
|
|
|
Track spend across multiple projects/people
|
|
|
|

|
|
|
|
The proxy provides:
|
|
|
|
1. [Hooks for auth](https://docs.litellm.ai/docs/proxy/virtual_keys#custom-auth)
|
|
2. [Hooks for logging](https://docs.litellm.ai/docs/proxy/logging#step-1---create-your-custom-litellm-callback-class)
|
|
3. [Cost tracking](https://docs.litellm.ai/docs/proxy/virtual_keys#tracking-spend)
|
|
4. [Rate Limiting](https://docs.litellm.ai/docs/proxy/users#set-rate-limits)
|
|
|
|
### 📖 Proxy Endpoints - [Swagger Docs](https://litellm-api.up.railway.app/)
|
|
|
|
Go here for a complete tutorial with keys + rate limits - [**here**](./proxy/docker_quick_start.md)
|
|
|
|
### Quick Start Proxy - CLI
|
|
|
|
```shell
|
|
pip install 'litellm[proxy]'
|
|
```
|
|
|
|
#### Step 1: Start litellm proxy
|
|
|
|
<Tabs>
|
|
|
|
<TabItem label="pip package" value="pip">
|
|
|
|
```shell
|
|
$ litellm --model huggingface/bigcode/starcoder
|
|
|
|
#INFO: Proxy running on http://0.0.0.0:4000
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
<TabItem label="Docker container" value="docker">
|
|
|
|
|
|
Step 1. CREATE config.yaml
|
|
|
|
Example `litellm_config.yaml`
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: azure/<your-azure-model-deployment>
|
|
api_base: os.environ/AZURE_API_BASE # runs os.getenv("AZURE_API_BASE")
|
|
api_key: os.environ/AZURE_API_KEY # runs os.getenv("AZURE_API_KEY")
|
|
api_version: "2023-07-01-preview"
|
|
```
|
|
|
|
Step 2. RUN Docker Image
|
|
|
|
```shell
|
|
docker run \
|
|
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
|
|
-e AZURE_API_KEY=d6*********** \
|
|
-e AZURE_API_BASE=https://openai-***********/ \
|
|
-p 4000:4000 \
|
|
ghcr.io/berriai/litellm:main-latest \
|
|
--config /app/config.yaml --detailed_debug
|
|
```
|
|
|
|
</TabItem>
|
|
|
|
</Tabs>
|
|
|
|
#### Step 2: Make ChatCompletions Request to Proxy
|
|
|
|
```python
|
|
import openai # openai v1.0.0+
|
|
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, write a short poem"
|
|
}
|
|
])
|
|
|
|
print(response)
|
|
```
|
|
|
|
## More details
|
|
|
|
- [exception mapping](./exception_mapping.md)
|
|
- [retries + model fallbacks for completion()](./completion/reliable_completions.md)
|
|
- [proxy virtual keys & spend management](./proxy/virtual_keys.md)
|
|
- [E2E Tutorial for LiteLLM Proxy Server](./proxy/docker_quick_start.md)
|