forked from phoenix/litellm-mirror
45 lines
1.7 KiB
Markdown
45 lines
1.7 KiB
Markdown
# Token Usage
|
|
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/))
|
|
|
|
However, we also expose 3 public helper functions to calculate token usage across providers:
|
|
|
|
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available.
|
|
|
|
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. It utilizes our model_cost map which can be found in `__init__.py` and also as a [community resource](https://github.com/BerriAI/litellm/blob/main/cookbook/community-resources/max_tokens.json).
|
|
|
|
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output).
|
|
|
|
## Example Usage
|
|
|
|
1. `token_counter`
|
|
|
|
```python
|
|
from litellm import token_counter
|
|
|
|
messages = [{"user": "role", "content": "Hey, how's it going"}]
|
|
print(token_counter(model="gpt-3.5-turbo", messages=messages))
|
|
```
|
|
|
|
2. `cost_per_token`
|
|
|
|
```python
|
|
from litellm import cost_per_token
|
|
|
|
prompt_tokens = 5
|
|
completion_tokens = 10
|
|
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens))
|
|
|
|
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
|
|
```
|
|
|
|
3. `completion_cost`
|
|
|
|
```python
|
|
from litellm import completion_cost
|
|
|
|
prompt = "Hey, how's it going"
|
|
completion = "Hi, I'm gpt - I am doing well"
|
|
cost_of_query = completion_cost(model="gpt-3.5-turbo", prompt=prompt, completion=completion))
|
|
|
|
print(cost_of_query)
|
|
```
|