forked from phoenix/litellm-mirror
* fix(caching_handler.py): handle positional arguments in add cache logic Fixes https://github.com/BerriAI/litellm/issues/6264 * feat(litellm_pre_call_utils.py): allow forwarding openai org id to backend client https://github.com/BerriAI/litellm/issues/6237 * docs(configs.md): add 'forward_openai_org_id' to docs * fix(proxy_server.py): return model info if user_model is set Fixes https://github.com/BerriAI/litellm/issues/6233 * fix(hosted_vllm/chat/transformation.py): don't set tools unless non-none * fix(openai.py): improve debug log for openai 'str' error Addresses https://github.com/BerriAI/litellm/issues/6272 * fix(proxy_server.py): fix linting error * fix(proxy_server.py): fix linting errors * test: skip WIP test * docs(openai.md): add docs on passing openai org id from client to openai
540 lines
No EOL
16 KiB
Markdown
540 lines
No EOL
16 KiB
Markdown
import Tabs from '@theme/Tabs';
|
||
import TabItem from '@theme/TabItem';
|
||
|
||
# OpenAI
|
||
LiteLLM supports OpenAI Chat + Embedding calls.
|
||
|
||
### Required API Keys
|
||
|
||
```python
|
||
import os
|
||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||
```
|
||
|
||
### Usage
|
||
```python
|
||
import os
|
||
from litellm import completion
|
||
|
||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||
|
||
# openai call
|
||
response = completion(
|
||
model = "gpt-4o",
|
||
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
||
)
|
||
```
|
||
|
||
### Usage - LiteLLM Proxy Server
|
||
|
||
Here's how to call OpenAI models with the LiteLLM Proxy Server
|
||
|
||
### 1. Save key in your environment
|
||
|
||
```bash
|
||
export OPENAI_API_KEY=""
|
||
```
|
||
|
||
### 2. Start the proxy
|
||
|
||
<Tabs>
|
||
<TabItem value="config" label="config.yaml">
|
||
|
||
```yaml
|
||
model_list:
|
||
- model_name: gpt-3.5-turbo
|
||
litellm_params:
|
||
model: openai/gpt-3.5-turbo # The `openai/` prefix will call openai.chat.completions.create
|
||
api_key: os.environ/OPENAI_API_KEY
|
||
- model_name: gpt-3.5-turbo-instruct
|
||
litellm_params:
|
||
model: text-completion-openai/gpt-3.5-turbo-instruct # The `text-completion-openai/` prefix will call openai.completions.create
|
||
api_key: os.environ/OPENAI_API_KEY
|
||
```
|
||
</TabItem>
|
||
<TabItem value="config-*" label="config.yaml - proxy all OpenAI models">
|
||
|
||
Use this to add all openai models with one API Key. **WARNING: This will not do any load balancing**
|
||
This means requests to `gpt-4`, `gpt-3.5-turbo` , `gpt-4-turbo-preview` will all go through this route
|
||
|
||
```yaml
|
||
model_list:
|
||
- model_name: "*" # all requests where model not in your config go to this deployment
|
||
litellm_params:
|
||
model: openai/* # set `openai/` to use the openai route
|
||
api_key: os.environ/OPENAI_API_KEY
|
||
```
|
||
</TabItem>
|
||
<TabItem value="cli" label="CLI">
|
||
|
||
```bash
|
||
$ litellm --model gpt-3.5-turbo
|
||
|
||
# Server running on http://0.0.0.0:4000
|
||
```
|
||
</TabItem>
|
||
|
||
</Tabs>
|
||
|
||
### 3. Test it
|
||
|
||
|
||
<Tabs>
|
||
<TabItem value="Curl" label="Curl Request">
|
||
|
||
```shell
|
||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||
--header 'Content-Type: application/json' \
|
||
--data ' {
|
||
"model": "gpt-3.5-turbo",
|
||
"messages": [
|
||
{
|
||
"role": "user",
|
||
"content": "what llm are you"
|
||
}
|
||
]
|
||
}
|
||
'
|
||
```
|
||
</TabItem>
|
||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||
|
||
```python
|
||
import openai
|
||
client = openai.OpenAI(
|
||
api_key="anything",
|
||
base_url="http://0.0.0.0:4000"
|
||
)
|
||
|
||
# request sent to model set on litellm proxy, `litellm --model`
|
||
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
||
{
|
||
"role": "user",
|
||
"content": "this is a test request, write a short poem"
|
||
}
|
||
])
|
||
|
||
print(response)
|
||
|
||
```
|
||
</TabItem>
|
||
<TabItem value="langchain" label="Langchain">
|
||
|
||
```python
|
||
from langchain.chat_models import ChatOpenAI
|
||
from langchain.prompts.chat import (
|
||
ChatPromptTemplate,
|
||
HumanMessagePromptTemplate,
|
||
SystemMessagePromptTemplate,
|
||
)
|
||
from langchain.schema import HumanMessage, SystemMessage
|
||
|
||
chat = ChatOpenAI(
|
||
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
|
||
model = "gpt-3.5-turbo",
|
||
temperature=0.1
|
||
)
|
||
|
||
messages = [
|
||
SystemMessage(
|
||
content="You are a helpful assistant that im using to make a test request to."
|
||
),
|
||
HumanMessage(
|
||
content="test from litellm. tell me why it's amazing in 1 sentence"
|
||
),
|
||
]
|
||
response = chat(messages)
|
||
|
||
print(response)
|
||
```
|
||
</TabItem>
|
||
</Tabs>
|
||
|
||
|
||
### Optional Keys - OpenAI Organization, OpenAI API Base
|
||
|
||
```python
|
||
import os
|
||
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL
|
||
os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL
|
||
```
|
||
|
||
### OpenAI Chat Completion Models
|
||
|
||
| Model Name | Function Call |
|
||
|-----------------------|-----------------------------------------------------------------|
|
||
| o1-mini | `response = completion(model="o1-mini", messages=messages)` |
|
||
| o1-preview | `response = completion(model="o1-preview", messages=messages)` |
|
||
| gpt-4o-mini | `response = completion(model="gpt-4o-mini", messages=messages)` |
|
||
| gpt-4o-mini-2024-07-18 | `response = completion(model="gpt-4o-mini-2024-07-18", messages=messages)` |
|
||
| gpt-4o | `response = completion(model="gpt-4o", messages=messages)` |
|
||
| gpt-4o-2024-08-06 | `response = completion(model="gpt-4o-2024-08-06", messages=messages)` |
|
||
| gpt-4o-2024-05-13 | `response = completion(model="gpt-4o-2024-05-13", messages=messages)` |
|
||
| gpt-4-turbo | `response = completion(model="gpt-4-turbo", messages=messages)` |
|
||
| gpt-4-turbo-preview | `response = completion(model="gpt-4-0125-preview", messages=messages)` |
|
||
| gpt-4-0125-preview | `response = completion(model="gpt-4-0125-preview", messages=messages)` |
|
||
| gpt-4-1106-preview | `response = completion(model="gpt-4-1106-preview", messages=messages)` |
|
||
| gpt-3.5-turbo-1106 | `response = completion(model="gpt-3.5-turbo-1106", messages=messages)` |
|
||
| gpt-3.5-turbo | `response = completion(model="gpt-3.5-turbo", messages=messages)` |
|
||
| gpt-3.5-turbo-0301 | `response = completion(model="gpt-3.5-turbo-0301", messages=messages)` |
|
||
| gpt-3.5-turbo-0613 | `response = completion(model="gpt-3.5-turbo-0613", messages=messages)` |
|
||
| gpt-3.5-turbo-16k | `response = completion(model="gpt-3.5-turbo-16k", messages=messages)` |
|
||
| gpt-3.5-turbo-16k-0613| `response = completion(model="gpt-3.5-turbo-16k-0613", messages=messages)` |
|
||
| gpt-4 | `response = completion(model="gpt-4", messages=messages)` |
|
||
| gpt-4-0314 | `response = completion(model="gpt-4-0314", messages=messages)` |
|
||
| gpt-4-0613 | `response = completion(model="gpt-4-0613", messages=messages)` |
|
||
| gpt-4-32k | `response = completion(model="gpt-4-32k", messages=messages)` |
|
||
| gpt-4-32k-0314 | `response = completion(model="gpt-4-32k-0314", messages=messages)` |
|
||
| gpt-4-32k-0613 | `response = completion(model="gpt-4-32k-0613", messages=messages)` |
|
||
|
||
|
||
These also support the `OPENAI_API_BASE` environment variable, which can be used to specify a custom API endpoint.
|
||
|
||
## OpenAI Vision Models
|
||
| Model Name | Function Call |
|
||
|-----------------------|-----------------------------------------------------------------|
|
||
| gpt-4o | `response = completion(model="gpt-4o", messages=messages)` |
|
||
| gpt-4-turbo | `response = completion(model="gpt-4-turbo", messages=messages)` |
|
||
| gpt-4-vision-preview | `response = completion(model="gpt-4-vision-preview", messages=messages)` |
|
||
|
||
#### Usage
|
||
```python
|
||
import os
|
||
from litellm import completion
|
||
|
||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||
|
||
# openai call
|
||
response = completion(
|
||
model = "gpt-4-vision-preview",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": "What’s in this image?"
|
||
},
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
],
|
||
)
|
||
|
||
```
|
||
|
||
## OpenAI Fine Tuned Models
|
||
|
||
| Model Name | Function Call |
|
||
|---------------------------|-----------------------------------------------------------------|
|
||
| fine tuned `gpt-4-0613` | `response = completion(model="ft:gpt-4-0613", messages=messages)` |
|
||
| fine tuned `gpt-4o-2024-05-13` | `response = completion(model="ft:gpt-4o-2024-05-13", messages=messages)` |
|
||
| fine tuned `gpt-3.5-turbo-0125` | `response = completion(model="ft:gpt-3.5-turbo-0125", messages=messages)` |
|
||
| fine tuned `gpt-3.5-turbo-1106` | `response = completion(model="ft:gpt-3.5-turbo-1106", messages=messages)` |
|
||
| fine tuned `gpt-3.5-turbo-0613` | `response = completion(model="ft:gpt-3.5-turbo-0613", messages=messages)` |
|
||
|
||
|
||
## Advanced
|
||
|
||
### Getting OpenAI API Response Headers
|
||
|
||
Set `litellm.return_response_headers = True` to get raw response headers from OpenAI
|
||
|
||
You can expect to always get the `_response_headers` field from `litellm.completion()`, `litellm.embedding()` functions
|
||
|
||
<Tabs>
|
||
<TabItem value="litellm.completion" label="litellm.completion">
|
||
|
||
```python
|
||
litellm.return_response_headers = True
|
||
|
||
# /chat/completion
|
||
response = completion(
|
||
model="gpt-4o-mini",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": "hi",
|
||
}
|
||
],
|
||
)
|
||
print(f"response: {response}")
|
||
print("_response_headers=", response._response_headers)
|
||
```
|
||
</TabItem>
|
||
|
||
<TabItem value="litellm.completion - streaming" label="litellm.completion + stream">
|
||
|
||
```python
|
||
litellm.return_response_headers = True
|
||
|
||
# /chat/completion
|
||
response = completion(
|
||
model="gpt-4o-mini",
|
||
stream=True,
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": "hi",
|
||
}
|
||
],
|
||
)
|
||
print(f"response: {response}")
|
||
print("response_headers=", response._response_headers)
|
||
for chunk in response:
|
||
print(chunk)
|
||
```
|
||
</TabItem>
|
||
|
||
<TabItem value="litellm.embedding" label="litellm.embedding">
|
||
|
||
```python
|
||
litellm.return_response_headers = True
|
||
|
||
# embedding
|
||
embedding_response = litellm.embedding(
|
||
model="text-embedding-ada-002",
|
||
input="hello",
|
||
)
|
||
|
||
embedding_response_headers = embedding_response._response_headers
|
||
print("embedding_response_headers=", embedding_response_headers)
|
||
```
|
||
|
||
</TabItem>
|
||
</Tabs>
|
||
Expected Response Headers from OpenAI
|
||
|
||
```json
|
||
{
|
||
"date": "Sat, 20 Jul 2024 22:05:23 GMT",
|
||
"content-type": "application/json",
|
||
"transfer-encoding": "chunked",
|
||
"connection": "keep-alive",
|
||
"access-control-allow-origin": "*",
|
||
"openai-model": "text-embedding-ada-002",
|
||
"openai-organization": "*****",
|
||
"openai-processing-ms": "20",
|
||
"openai-version": "2020-10-01",
|
||
"strict-transport-security": "max-age=15552000; includeSubDomains; preload",
|
||
"x-ratelimit-limit-requests": "5000",
|
||
"x-ratelimit-limit-tokens": "5000000",
|
||
"x-ratelimit-remaining-requests": "4999",
|
||
"x-ratelimit-remaining-tokens": "4999999",
|
||
"x-ratelimit-reset-requests": "12ms",
|
||
"x-ratelimit-reset-tokens": "0s",
|
||
"x-request-id": "req_cc37487bfd336358231a17034bcfb4d9",
|
||
"cf-cache-status": "DYNAMIC",
|
||
"set-cookie": "__cf_bm=E_FJY8fdAIMBzBE2RZI2.OkMIO3lf8Hz.ydBQJ9m3q8-1721513123-1.0.1.1-6OK0zXvtd5s9Jgqfz66cU9gzQYpcuh_RLaUZ9dOgxR9Qeq4oJlu.04C09hOTCFn7Hg.k.2tiKLOX24szUE2shw; path=/; expires=Sat, 20-Jul-24 22:35:23 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None, *cfuvid=SDndIImxiO3U0aBcVtoy1TBQqYeQtVDo1L6*Nlpp7EU-1721513123215-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None",
|
||
"x-content-type-options": "nosniff",
|
||
"server": "cloudflare",
|
||
"cf-ray": "8a66409b4f8acee9-SJC",
|
||
"content-encoding": "br",
|
||
"alt-svc": "h3=\":443\"; ma=86400"
|
||
}
|
||
```
|
||
|
||
### Parallel Function calling
|
||
See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call)
|
||
```python
|
||
import litellm
|
||
import json
|
||
# set openai api key
|
||
import os
|
||
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
|
||
# Example dummy function hard coded to return the same weather
|
||
# In production, this could be your backend API or an external API
|
||
def get_current_weather(location, unit="fahrenheit"):
|
||
"""Get the current weather in a given location"""
|
||
if "tokyo" in location.lower():
|
||
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
||
elif "san francisco" in location.lower():
|
||
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
|
||
elif "paris" in location.lower():
|
||
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
||
else:
|
||
return json.dumps({"location": location, "temperature": "unknown"})
|
||
|
||
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
||
tools = [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"name": "get_current_weather",
|
||
"description": "Get the current weather in a given location",
|
||
"parameters": {
|
||
"type": "object",
|
||
"properties": {
|
||
"location": {
|
||
"type": "string",
|
||
"description": "The city and state, e.g. San Francisco, CA",
|
||
},
|
||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||
},
|
||
"required": ["location"],
|
||
},
|
||
},
|
||
}
|
||
]
|
||
|
||
response = litellm.completion(
|
||
model="gpt-3.5-turbo-1106",
|
||
messages=messages,
|
||
tools=tools,
|
||
tool_choice="auto", # auto is default, but we'll be explicit
|
||
)
|
||
print("\nLLM Response1:\n", response)
|
||
response_message = response.choices[0].message
|
||
tool_calls = response.choices[0].message.tool_calls
|
||
```
|
||
|
||
### Setting `extra_headers` for completion calls
|
||
```python
|
||
import os
|
||
from litellm import completion
|
||
|
||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||
|
||
response = completion(
|
||
model = "gpt-3.5-turbo",
|
||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||
extra_headers={"AI-Resource Group": "ishaan-resource"}
|
||
)
|
||
```
|
||
|
||
### Setting Organization-ID for completion calls
|
||
This can be set in one of the following ways:
|
||
- Environment Variable `OPENAI_ORGANIZATION`
|
||
- Params to `litellm.completion(model=model, organization="your-organization-id")`
|
||
- Set as `litellm.organization="your-organization-id"`
|
||
```python
|
||
import os
|
||
from litellm import completion
|
||
|
||
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
||
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL
|
||
|
||
response = completion(
|
||
model = "gpt-3.5-turbo",
|
||
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
||
)
|
||
```
|
||
|
||
### Set `ssl_verify=False`
|
||
|
||
This is done by setting your own `httpx.Client`
|
||
|
||
- For `litellm.completion` set `litellm.client_session=httpx.Client(verify=False)`
|
||
- For `litellm.acompletion` set `litellm.aclient_session=AsyncClient.Client(verify=False)`
|
||
```python
|
||
import litellm, httpx
|
||
|
||
# for completion
|
||
litellm.client_session = httpx.Client(verify=False)
|
||
response = litellm.completion(
|
||
model="gpt-3.5-turbo",
|
||
messages=messages,
|
||
)
|
||
|
||
# for acompletion
|
||
litellm.aclient_session = httpx.AsyncClient(verify=False)
|
||
response = litellm.acompletion(
|
||
model="gpt-3.5-turbo",
|
||
messages=messages,
|
||
)
|
||
```
|
||
|
||
### Using Helicone Proxy with LiteLLM
|
||
```python
|
||
import os
|
||
import litellm
|
||
from litellm import completion
|
||
|
||
os.environ["OPENAI_API_KEY"] = ""
|
||
|
||
# os.environ["OPENAI_API_BASE"] = ""
|
||
litellm.api_base = "https://oai.hconeai.com/v1"
|
||
litellm.headers = {
|
||
"Helicone-Auth": f"Bearer {os.getenv('HELICONE_API_KEY')}",
|
||
"Helicone-Cache-Enabled": "true",
|
||
}
|
||
|
||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||
|
||
# openai call
|
||
response = completion("gpt-3.5-turbo", messages)
|
||
```
|
||
|
||
### Using OpenAI Proxy with LiteLLM
|
||
```python
|
||
import os
|
||
import litellm
|
||
from litellm import completion
|
||
|
||
os.environ["OPENAI_API_KEY"] = ""
|
||
|
||
# set custom api base to your proxy
|
||
# either set .env or litellm.api_base
|
||
# os.environ["OPENAI_API_BASE"] = ""
|
||
litellm.api_base = "your-openai-proxy-url"
|
||
|
||
|
||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||
|
||
# openai call
|
||
response = completion("openai/your-model-name", messages)
|
||
```
|
||
|
||
If you need to set api_base dynamically, just pass it in completions instead - `completions(...,api_base="your-proxy-api-base")`
|
||
|
||
For more check out [setting API Base/Keys](../set_keys.md)
|
||
|
||
### Forwarding Org ID for Proxy requests
|
||
|
||
Forward openai Org ID's from the client to OpenAI with `forward_openai_org_id` param.
|
||
|
||
1. Setup config.yaml
|
||
|
||
```yaml
|
||
model_list:
|
||
- model_name: "gpt-3.5-turbo"
|
||
litellm_params:
|
||
model: gpt-3.5-turbo
|
||
api_key: os.environ/OPENAI_API_KEY
|
||
|
||
general_settings:
|
||
forward_openai_org_id: true # 👈 KEY CHANGE
|
||
```
|
||
|
||
2. Start Proxy
|
||
|
||
```bash
|
||
litellm --config config.yaml --detailed_debug
|
||
|
||
# RUNNING on http://0.0.0.0:4000
|
||
```
|
||
|
||
3. Make OpenAI call
|
||
|
||
```python
|
||
from openai import OpenAI
|
||
client = OpenAI(
|
||
api_key="sk-1234",
|
||
organization="my-special-org",
|
||
base_url="http://0.0.0.0:4000"
|
||
)
|
||
|
||
client.chat.completions.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
|
||
```
|
||
|
||
In your logs you should see the forwarded org id
|
||
|
||
```bash
|
||
LiteLLM:DEBUG: utils.py:255 - Request to litellm:
|
||
LiteLLM:DEBUG: utils.py:255 - litellm.acompletion(... organization='my-special-org',)
|
||
``` |