litellm/docs/my-website/docs/proxy/embedding.md
2024-03-08 21:59:00 -08:00

1.4 KiB

import Image from '@theme/IdealImage'; import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

Embeddings - /embeddings

See supported Embedding Providers & Models here

Quick start

Here's how to route between GPT-J embedding (sagemaker endpoint), Amazon Titan embedding (Bedrock) and Azure OpenAI embedding on the proxy server:

  1. Set models in your config.yaml
model_list:
  - model_name: sagemaker-embeddings
    litellm_params: 
      model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
  - model_name: amazon-embeddings
    litellm_params:
      model: "bedrock/amazon.titan-embed-text-v1"
  - model_name: azure-embeddings
    litellm_params: 
      model: "azure/azure-embedding-model"
      api_base: "os.environ/AZURE_API_BASE" # os.getenv("AZURE_API_BASE")
      api_key: "os.environ/AZURE_API_KEY" # os.getenv("AZURE_API_KEY")
      api_version: "2023-07-01-preview"

general_settings:
  master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token
  1. Start the proxy
$ litellm --config /path/to/config.yaml
  1. Test the embedding call
curl --location 'http://0.0.0.0:4000/v1/embeddings' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
    "input": "The food was delicious and the waiter..",
    "model": "sagemaker-embeddings",
}'