litellm/docs/my-website/docs/observability/promptlayer_integration.md
2024-06-17 17:31:58 -07:00

88 lines
No EOL
2.6 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Image from '@theme/IdealImage';
# Promptlayer Tutorial
:::tip
This is community maintained, Please make an issue if you run into a bug
https://github.com/BerriAI/litellm
:::
Promptlayer is a platform for prompt engineers. Log OpenAI requests. Search usage history. Track performance. Visually manage prompt templates.
<Image img={require('../../img/promptlayer.png')} />
## Use Promptlayer to log requests across all LLM Providers (OpenAI, Azure, Anthropic, Cohere, Replicate, PaLM)
liteLLM provides `callbacks`, making it easy for you to log data depending on the status of your responses.
### Using Callbacks
Get your PromptLayer API Key from https://promptlayer.com/
Use just 2 lines of code, to instantly log your responses **across all providers** with promptlayer:
```python
litellm.success_callback = ["promptlayer"]
```
Complete code
```python
from litellm import completion
## set env variables
os.environ["PROMPTLAYER_API_KEY"] = "your-promptlayer-key"
os.environ["OPENAI_API_KEY"], os.environ["COHERE_API_KEY"] = "", ""
# set callbacks
litellm.success_callback = ["promptlayer"]
#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
#cohere call
response = completion(model="command-nightly", messages=[{"role": "user", "content": "Hi 👋 - i'm cohere"}])
```
### Logging Metadata
You can also log completion call metadata to Promptlayer.
You can add metadata to a completion call through the metadata param:
```python
completion(model,messages, metadata={"model": "ai21"})
```
**Complete Code**
```python
from litellm import completion
## set env variables
os.environ["PROMPTLAYER_API_KEY"] = "your-promptlayer-key"
os.environ["OPENAI_API_KEY"], os.environ["COHERE_API_KEY"] = "", ""
# set callbacks
litellm.success_callback = ["promptlayer"]
#openai call - log llm provider is openai
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}], metadata={"provider": "openai"})
#cohere call - log llm provider is cohere
response = completion(model="command-nightly", messages=[{"role": "user", "content": "Hi 👋 - i'm cohere"}], metadata={"provider": "cohere"})
```
Credits to [Nick Bradford](https://github.com/nsbradford), from [Vim-GPT](https://github.com/nsbradford/VimGPT), for the suggestion.
## Support & Talk to Founders
- [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
- [Community Discord 💭](https://discord.gg/wuPM9dRgDw)
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai