litellm/docs/my-website/docs/providers/openai.md
2023-11-30 13:32:51 +05:30

219 lines
No EOL
7.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# OpenAI
LiteLLM supports OpenAI Chat + Text completion and embedding calls.
### Required API Keys
```python
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
```
### Usage
```python
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
# openai call
response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
```
### Optional Keys - OpenAI Organization, OpenAI API Base
```python
import os
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL
os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL
```
### OpenAI Chat Completion Models
| Model Name | Function Call |
|-----------------------|-----------------------------------------------------------------|
| gpt-4-1106-preview | `response = completion(model="gpt-4-1106-preview", messages=messages)` |
| gpt-3.5-turbo-1106 | `response = completion(model="gpt-3.5-turbo-1106", messages=messages)` |
| gpt-3.5-turbo | `response = completion(model="gpt-3.5-turbo", messages=messages)` |
| gpt-3.5-turbo-0301 | `response = completion(model="gpt-3.5-turbo-0301", messages=messages)` |
| gpt-3.5-turbo-0613 | `response = completion(model="gpt-3.5-turbo-0613", messages=messages)` |
| gpt-3.5-turbo-16k | `response = completion(model="gpt-3.5-turbo-16k", messages=messages)` |
| gpt-3.5-turbo-16k-0613| `response = completion(model="gpt-3.5-turbo-16k-0613", messages=messages)` |
| gpt-4 | `response = completion(model="gpt-4", messages=messages)` |
| gpt-4-0314 | `response = completion(model="gpt-4-0314", messages=messages)` |
| gpt-4-0613 | `response = completion(model="gpt-4-0613", messages=messages)` |
| gpt-4-32k | `response = completion(model="gpt-4-32k", messages=messages)` |
| gpt-4-32k-0314 | `response = completion(model="gpt-4-32k-0314", messages=messages)` |
| gpt-4-32k-0613 | `response = completion(model="gpt-4-32k-0613", messages=messages)` |
These also support the `OPENAI_API_BASE` environment variable, which can be used to specify a custom API endpoint.
## OpenAI Vision Models
| Model Name | Function Call |
|-----------------------|-----------------------------------------------------------------|
| gpt-4-vision-preview | `response = completion(model="gpt-4-vision-preview", messages=messages)` |
#### Usage
```python
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
# openai call
response = completion(
model = "gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
)
```
## OpenAI Text Completion Models / Instruct Models
| Model Name | Function Call |
|---------------------|----------------------------------------------------|
| gpt-3.5-turbo-instruct | `response = completion(model="gpt-3.5-turbo-instruct", messages=messages)` |
| text-davinci-003 | `response = completion(model="text-davinci-003", messages=messages)` |
| ada-001 | `response = completion(model="ada-001", messages=messages)` |
| curie-001 | `response = completion(model="curie-001", messages=messages)` |
| babbage-001 | `response = completion(model="babbage-001", messages=messages)` |
| babbage-002 | `response = completion(model="babbage-002", messages=messages)` |
| davinci-002 | `response = completion(model="davinci-002", messages=messages)` |
## Advanced
### Parallel Function calling
See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call)
```python
import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
```
### Setting Organization-ID for completion calls
This can be set in one of the following ways:
- Environment Variable `OPENAI_ORGANIZATION`
- Params to `litellm.completion(model=model, organization="your-organization-id")`
- Set as `litellm.organization="your-organization-id"`
```python
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_ORGANIZATION"] = "your-org-id" # OPTIONAL
response = completion(
model = "gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
```
### Using Helicone Proxy with LiteLLM
```python
import os
import litellm
from litellm import completion
os.environ["OPENAI_API_KEY"] = ""
# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "https://oai.hconeai.com/v1"
litellm.headers = {
"Helicone-Auth": f"Bearer {os.getenv('HELICONE_API_KEY')}",
"Helicone-Cache-Enabled": "true",
}
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion("gpt-3.5-turbo", messages)
```
### Using OpenAI Proxy with LiteLLM
```python
import os
import litellm
from litellm import completion
os.environ["OPENAI_API_KEY"] = ""
# set custom api base to your proxy
# either set .env or litellm.api_base
# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "your-openai-proxy-url"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion("openai/your-model-name", messages)
```
If you need to set api_base dynamically, just pass it in completions instead - `completions(...,api_base="your-proxy-api-base")`
For more check out [setting API Base/Keys](../set_keys.md)