litellm/docs/my-website/docs/proxy/user_keys.md
2024-08-03 17:44:28 -07:00

30 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

💡 Migrating from OpenAI (Langchain, OpenAI SDK, LlamaIndex, Instructor, Curl)

LiteLLM Proxy is OpenAI-Compatible, and supports:

LiteLLM Proxy is Azure OpenAI-compatible:

  • /chat/completions
  • /completions
  • /embeddings

LiteLLM Proxy is Anthropic-compatible:

  • /messages

LiteLLM Proxy is Vertex AI compatible:

This doc covers:

  • /chat/completion
  • /embedding

These are selected examples. LiteLLM Proxy is OpenAI-Compatible, it works with any project that calls OpenAI. Just change the base_url, api_key and model.

To pass provider-specific args, go here

To drop unsupported params (E.g. frequency_penalty for bedrock with librechat), go here

:::info

Input, Output, Exceptions are mapped to the OpenAI format for all supported models

:::

How to send requests to the proxy, pass metadata, allow users to pass in their OpenAI API key

/chat/completions

Request Format

Set extra_body={"metadata": { }} to metadata you want to pass

import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages = [
        {
            "role": "user",
            "content": "this is a test request, write a short poem"
        }
    ],
    extra_body={ # pass in any provider-specific param, if not supported by openai, https://docs.litellm.ai/docs/completion/input#provider-specific-params
        "metadata": { # 👈 use for logging additional params (e.g. to langfuse)
            "generation_name": "ishaan-generation-openai-client",
            "generation_id": "openai-client-gen-id22",
            "trace_id": "openai-client-trace-id22",
            "trace_user_id": "openai-client-user-id2"
        }
    }
)

print(response)

Set extra_body={"metadata": { }} to metadata you want to pass

import openai
client = openai.AzureOpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages = [
        {
            "role": "user",
            "content": "this is a test request, write a short poem"
        }
    ],
    extra_body={ # pass in any provider-specific param, if not supported by openai, https://docs.litellm.ai/docs/completion/input#provider-specific-params
        "metadata": { # 👈 use for logging additional params (e.g. to langfuse)
            "generation_name": "ishaan-generation-openai-client",
            "generation_id": "openai-client-gen-id22",
            "trace_id": "openai-client-trace-id22",
            "trace_user_id": "openai-client-user-id2"
        }
    }
)

print(response)
import os, dotenv

from llama_index.llms import AzureOpenAI
from llama_index.embeddings import AzureOpenAIEmbedding
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext

llm = AzureOpenAI(
    engine="azure-gpt-3.5",               # model_name on litellm proxy
    temperature=0.0,
    azure_endpoint="http://0.0.0.0:4000", # litellm proxy endpoint
    api_key="sk-1234",                    # litellm proxy API Key
    api_version="2023-07-01-preview",
)

embed_model = AzureOpenAIEmbedding(
    deployment_name="azure-embedding-model",
    azure_endpoint="http://0.0.0.0:4000",
    api_key="sk-1234",
    api_version="2023-07-01-preview",
)


documents = SimpleDirectoryReader("llama_index_data").load_data()
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)

query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)

Pass metadata as part of the request body

curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "gpt-3.5-turbo",
    "messages": [
        {
        "role": "user",
        "content": "what llm are you"
        }
    ],
    "metadata": {
        "generation_name": "ishaan-test-generation",
        "generation_id": "gen-id22",
        "trace_id": "trace-id22",
        "trace_user_id": "user-id2"
    }
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os 

os.environ["OPENAI_API_KEY"] = "anything"

chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000",
    model = "gpt-3.5-turbo",
    temperature=0.1,
    extra_body={
        "metadata": {
            "generation_name": "ishaan-generation-langchain-client",
            "generation_id": "langchain-client-gen-id22",
            "trace_id": "langchain-client-trace-id22",
            "trace_user_id": "langchain-client-user-id2"
        }
    }
)

messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
response = chat(messages)

print(response)
import { ChatOpenAI } from "@langchain/openai";


const model = new ChatOpenAI({
  modelName: "gpt-4",
  openAIApiKey: "sk-1234",
  modelKwargs: {"metadata": "hello world"} // 👈 PASS Additional params here
}, {
  basePath: "http://0.0.0.0:4000",
});

const message = await model.invoke("Hi there!");

console.log(message);

const { OpenAI } = require('openai');

const openai = new OpenAI({
  apiKey: "sk-1234", // This is the default and can be omitted
  baseURL: "http://0.0.0.0:4000"
});

async function main() {
  const chatCompletion = await openai.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-3.5-turbo',
  }, {"metadata": {
            "generation_name": "ishaan-generation-openaijs-client",
            "generation_id": "openaijs-client-gen-id22",
            "trace_id": "openaijs-client-trace-id22",
            "trace_user_id": "openaijs-client-user-id2"
        }});
}

main();

import os

from anthropic import Anthropic

client = Anthropic(
    base_url="http://localhost:4000", # proxy endpoint
    api_key="sk-s4xN1IiLTCytwtZFJaYQrA", # litellm proxy virtual key
)

message = client.messages.create(
    max_tokens=1024,
    messages=[
        {
            "role": "user",
            "content": "Hello, Claude",
        }
    ],
    model="claude-3-opus-20240229",
)
print(message.content)
import os
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage


client = MistralClient(api_key="sk-1234", endpoint="http://0.0.0.0:4000")
chat_response = client.chat(
    model="mistral-small-latest",
    messages=[
        {"role": "user", "content": "this is a test request, write a short poem"}
    ],
)
print(chat_response.choices[0].message.content)
from openai import OpenAI
import instructor
from pydantic import BaseModel

my_proxy_api_key = "" # e.g. sk-1234
my_proxy_base_url = "" # e.g. http://0.0.0.0:4000

# This enables response_model keyword
# from client.chat.completions.create
client = instructor.from_openai(OpenAI(api_key=my_proxy_api_key, base_url=my_proxy_base_url))

class UserDetail(BaseModel):
    name: str
    age: int

user = client.chat.completions.create(
    model="gemini-pro-flash",
    response_model=UserDetail,
    messages=[
        {"role": "user", "content": "Extract Jason is 25 years old"},
    ]
)

assert isinstance(user, UserDetail)
assert user.name == "Jason"
assert user.age == 25

Response Format

{
  "id": "chatcmpl-8c5qbGTILZa1S4CK3b31yj5N40hFN",
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "message": {
        "content": "As an AI language model, I do not have a physical form or personal preferences. However, I am programmed to assist with various topics and provide information on a wide range of subjects. Is there something specific you would like assistance with?",
        "role": "assistant"
      }
    }
  ],
  "created": 1704089632,
  "model": "gpt-35-turbo",
  "object": "chat.completion",
  "system_fingerprint": null,
  "usage": {
    "completion_tokens": 47,
    "prompt_tokens": 12,
    "total_tokens": 59
  },
  "_response_ms": 1753.426
}

Function Calling

Here's some examples of doing function calling with the proxy.

You can use the proxy for function calling with any openai-compatible project.

curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPTIONAL_YOUR_PROXY_KEY" \
-d '{
  "model": "gpt-4-turbo",
  "messages": [
    {
      "role": "user",
      "content": "What'\''s the weather like in Boston today?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_current_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. San Francisco, CA"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location"]
        }
      }
    }
  ],
  "tool_choice": "auto"
}'
from openai import OpenAI
client = OpenAI(
    api_key="sk-1234", # [OPTIONAL] set if you set one on proxy, else set ""
    base_url="http://0.0.0.0:4000",
)

tools = [
  {
    "type": "function",
    "function": {
      "name": "get_current_weather",
      "description": "Get the current weather in a given location",
      "parameters": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. San Francisco, CA",
          },
          "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
      },
    }
  }
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
completion = client.chat.completions.create(
  model="gpt-4o", # use 'model_name' from config.yaml
  messages=messages,
  tools=tools,
  tool_choice="auto"
)

print(completion)

/embeddings

Request Format

Input, Output and Exceptions are mapped to the OpenAI format for all supported models

import openai
from openai import OpenAI

# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")

response = client.embeddings.create(
    input=["hello from litellm"],
    model="text-embedding-ada-002"
)

print(response)

curl --location 'http://0.0.0.0:4000/embeddings' \
  --header 'Content-Type: application/json' \
  --data ' {
  "model": "text-embedding-ada-002",
  "input": ["write a litellm poem"]
  }'
from langchain.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")


text = "This is a test document."

query_result = embeddings.embed_query(text)

print(f"SAGEMAKER EMBEDDINGS")
print(query_result[:5])

embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")

text = "This is a test document."

query_result = embeddings.embed_query(text)

print(f"BEDROCK EMBEDDINGS")
print(query_result[:5])

embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")

text = "This is a test document."

query_result = embeddings.embed_query(text)

print(f"TITAN EMBEDDINGS")
print(query_result[:5])

Response Format

{
  "object": "list",
  "data": [
    {
      "object": "embedding",
      "embedding": [
        0.0023064255,
        -0.009327292,
        .... 
        -0.0028842222,
      ],
      "index": 0
    }
  ],
  "model": "text-embedding-ada-002",
  "usage": {
    "prompt_tokens": 8,
    "total_tokens": 8
  }
}

/moderations

Request Format

Input, Output and Exceptions are mapped to the OpenAI format for all supported models

import openai
from openai import OpenAI

# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")

response = client.moderations.create(
    input="hello from litellm",
    model="text-moderation-stable"
)

print(response)

curl --location 'http://0.0.0.0:4000/moderations' \
    --header 'Content-Type: application/json' \
    --header 'Authorization: Bearer sk-1234' \
    --data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'

Response Format

{
  "id": "modr-8sFEN22QCziALOfWTa77TodNLgHwA",
  "model": "text-moderation-007",
  "results": [
    {
      "categories": {
        "harassment": false,
        "harassment/threatening": false,
        "hate": false,
        "hate/threatening": false,
        "self-harm": false,
        "self-harm/instructions": false,
        "self-harm/intent": false,
        "sexual": false,
        "sexual/minors": false,
        "violence": false,
        "violence/graphic": false
      },
      "category_scores": {
        "harassment": 0.000019947197870351374,
        "harassment/threatening": 5.5971017900446896e-6,
        "hate": 0.000028560316422954202,
        "hate/threatening": 2.2631787999216613e-8,
        "self-harm": 2.9121162015144364e-7,
        "self-harm/instructions": 9.314219084899378e-8,
        "self-harm/intent": 8.093739012338119e-8,
        "sexual": 0.00004414955765241757,
        "sexual/minors": 0.0000156943697220413,
        "violence": 0.00022354527027346194,
        "violence/graphic": 8.804164281173144e-6
      },
      "flagged": false
    }
  ]
}

Using with OpenAI compatible projects

Set base_url to the LiteLLM Proxy server

import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Start the LiteLLM proxy

litellm --model gpt-3.5-turbo

#INFO: Proxy running on http://0.0.0.0:4000

1. Clone the repo

git clone https://github.com/danny-avila/LibreChat.git

2. Modify Librechat's docker-compose.yml

LiteLLM Proxy is running on port 4000, set 4000 as the proxy below

OPENAI_REVERSE_PROXY=http://host.docker.internal:4000/v1/chat/completions

3. Save fake OpenAI key in Librechat's .env

Copy Librechat's .env.example to .env and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).

OPENAI_API_KEY=sk-1234

4. Run LibreChat:

docker compose up

Continue-Dev brings ChatGPT to VSCode. See how to install it here.

In the config.py set this as your default model.

  default=OpenAI(
      api_key="IGNORED",
      model="fake-model-name",
      context_length=2048, # customize if needed for your model
      api_base="http://localhost:4000" # your proxy server url
  ),

Credits @vividfog for this tutorial.

$ pip install aider 

$ aider --openai-api-base http://0.0.0.0:4000 --openai-api-key fake-key
pip install pyautogen
from autogen import AssistantAgent, UserProxyAgent, oai
config_list=[
    {
        "model": "my-fake-model",
        "api_base": "http://localhost:4000",  #litellm compatible endpoint
        "api_type": "open_ai",
        "api_key": "NULL", # just a placeholder
    }
]

response = oai.Completion.create(config_list=config_list, prompt="Hi")
print(response) # works fine

llm_config={
    "config_list": config_list,
}

assistant = AssistantAgent("assistant", llm_config=llm_config)
user_proxy = UserProxyAgent("user_proxy")
user_proxy.initiate_chat(assistant, message="Plot a chart of META and TESLA stock price change YTD.", config_list=config_list)

Credits @victordibia for this tutorial.

A guidance language for controlling large language models. https://github.com/guidance-ai/guidance

NOTE: Guidance sends additional params like stop_sequences which can cause some models to fail if they don't support it.

Fix: Start your proxy using the --drop_params flag

litellm --model ollama/codellama --temperature 0.3 --max_tokens 2048 --drop_params
import guidance

# set api_base to your proxy
# set api_key to anything
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:4000", api_key="anything")

experts = guidance('''
{{#system~}}
You are a helpful and terse assistant.
{{~/system}}

{{#user~}}
I want a response to the following question:
{{query}}
Name 3 world-class experts (past or present) who would be great at answering this?
Don't answer the question yet.
{{~/user}}

{{#assistant~}}
{{gen 'expert_names' temperature=0 max_tokens=300}}
{{~/assistant}}
''', llm=gpt4)

result = experts(query='How can I be more productive?')
print(result)

Advanced

(BETA) Batch Completions - pass multiple models

Use this when you want to send 1 request to N Models

Expected Request Format

Pass model as a string of comma separated value of models. Example "model"="llama3,gpt-3.5-turbo"

This same request will be sent to the following model groups on the litellm proxy config.yaml

  • model_name="llama3"
  • model_name="gpt-3.5-turbo"
import openai

client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")

response = client.chat.completions.create(
    model="gpt-3.5-turbo,llama3",
    messages=[
        {"role": "user", "content": "this is a test request, write a short poem"}
    ],
)

print(response)

Expected Response Format

Get a list of responses when model is passed as a list

[
    ChatCompletion(
        id='chatcmpl-9NoYhS2G0fswot0b6QpoQgmRQMaIf',
        choices=[
            Choice(
                finish_reason='stop',
                index=0,
                logprobs=None,
                message=ChatCompletionMessage(
                    content='In the depths of my soul, a spark ignites\nA light that shines so pure and bright\nIt dances and leaps, refusing to die\nA flame of hope that reaches the sky\n\nIt warms my heart and fills me with bliss\nA reminder that in darkness, there is light to kiss\nSo I hold onto this fire, this guiding light\nAnd let it lead me through the darkest night.',
                    role='assistant',
                    function_call=None,
                    tool_calls=None
                )
            )
        ],
        created=1715462919,
        model='gpt-3.5-turbo-0125',
        object='chat.completion',
        system_fingerprint=None,
        usage=CompletionUsage(
            completion_tokens=83,
            prompt_tokens=17,
            total_tokens=100
        )
    ),
    ChatCompletion(
        id='chatcmpl-4ac3e982-da4e-486d-bddb-ed1d5cb9c03c',
        choices=[
            Choice(
                finish_reason='stop',
                index=0,
                logprobs=None,
                message=ChatCompletionMessage(
                    content="A test request, and I'm delighted!\nHere's a short poem, just for you:\n\nMoonbeams dance upon the sea,\nA path of light, for you to see.\nThe stars up high, a twinkling show,\nA night of wonder, for all to know.\n\nThe world is quiet, save the night,\nA peaceful hush, a gentle light.\nThe world is full, of beauty rare,\nA treasure trove, beyond compare.\n\nI hope you enjoyed this little test,\nA poem born, of whimsy and jest.\nLet me know, if there's anything else!",
                    role='assistant',
                    function_call=None,
                    tool_calls=None
                )
            )
        ],
        created=1715462919,
        model='groq/llama3-8b-8192',
        object='chat.completion',
        system_fingerprint='fp_a2c8d063cb',
        usage=CompletionUsage(
            completion_tokens=120,
            prompt_tokens=20,
            total_tokens=140
        )
    )
]
curl --location 'http://localhost:4000/chat/completions' \
    --header 'Authorization: Bearer sk-1234' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "llama3,gpt-3.5-turbo",
    "max_tokens": 10,
    "user": "litellm2",
    "messages": [
        {
        "role": "user",
        "content": "is litellm getting better"
        }
    ]
}'

Expected Response Format

Get a list of responses when model is passed as a list

[
  {
    "id": "chatcmpl-3dbd5dd8-7c82-4ca3-bf1f-7c26f497cf2b",
    "choices": [
      {
        "finish_reason": "length",
        "index": 0,
        "message": {
          "content": "The Elder Scrolls IV: Oblivion!\n\nReleased",
          "role": "assistant"
        }
      }
    ],
    "created": 1715459876,
    "model": "groq/llama3-8b-8192",
    "object": "chat.completion",
    "system_fingerprint": "fp_179b0f92c9",
    "usage": {
      "completion_tokens": 10,
      "prompt_tokens": 12,
      "total_tokens": 22
    }
  },
  {
    "id": "chatcmpl-9NnldUfFLmVquFHSX4yAtjCw8PGei",
    "choices": [
      {
        "finish_reason": "length",
        "index": 0,
        "message": {
          "content": "TES4 could refer to The Elder Scrolls IV:",
          "role": "assistant"
        }
      }
    ],
    "created": 1715459877,
    "model": "gpt-3.5-turbo-0125",
    "object": "chat.completion",
    "system_fingerprint": null,
    "usage": {
      "completion_tokens": 10,
      "prompt_tokens": 9,
      "total_tokens": 19
    }
  }
]

Pass User LLM API Keys, Fallbacks

Allow your end-users to pass their model list, api base, OpenAI API key (any LiteLLM supported provider) to make requests

Note This is not related to virtual keys. This is for when you want to pass in your users actual LLM API keys.

:::info

**You can pass a litellm.RouterConfig as user_config, See all supported params here https://github.com/BerriAI/litellm/blob/main/litellm/types/router.py **

:::

Step 1: Define user model list & config

import os

user_config = {
    'model_list': [
        {
            'model_name': 'user-azure-instance',
            'litellm_params': {
                'model': 'azure/chatgpt-v-2',
                'api_key': os.getenv('AZURE_API_KEY'),
                'api_version': os.getenv('AZURE_API_VERSION'),
                'api_base': os.getenv('AZURE_API_BASE'),
                'timeout': 10,
            },
            'tpm': 240000,
            'rpm': 1800,
        },
        {
            'model_name': 'user-openai-instance',
            'litellm_params': {
                'model': 'gpt-3.5-turbo',
                'api_key': os.getenv('OPENAI_API_KEY'),
                'timeout': 10,
            },
            'tpm': 240000,
            'rpm': 1800,
        },
    ],
    'num_retries': 2,
    'allowed_fails': 3,
    'fallbacks': [
        {
            'user-azure-instance': ['user-openai-instance']
        }
    ]
}


Step 2: Send user_config in extra_body

import openai
client = openai.OpenAI(
    api_key="sk-1234",
    base_url="http://0.0.0.0:4000"
)

# send request to `user-azure-instance`
response = client.chat.completions.create(model="user-azure-instance", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
], 
    extra_body={
      "user_config": user_config
    }
) # 👈 User config

print(response)

Step 1: Define user model list & config

const os = require('os');

const userConfig = {
    model_list: [
        {
            model_name: 'user-azure-instance',
            litellm_params: {
                model: 'azure/chatgpt-v-2',
                api_key: process.env.AZURE_API_KEY,
                api_version: process.env.AZURE_API_VERSION,
                api_base: process.env.AZURE_API_BASE,
                timeout: 10,
            },
            tpm: 240000,
            rpm: 1800,
        },
        {
            model_name: 'user-openai-instance',
            litellm_params: {
                model: 'gpt-3.5-turbo',
                api_key: process.env.OPENAI_API_KEY,
                timeout: 10,
            },
            tpm: 240000,
            rpm: 1800,
        },
    ],
    num_retries: 2,
    allowed_fails: 3,
    fallbacks: [
        {
            'user-azure-instance': ['user-openai-instance']
        }
    ]
};

Step 2: Send user_config as a param to openai.chat.completions.create

const { OpenAI } = require('openai');

const openai = new OpenAI({
  apiKey: "sk-1234",
  baseURL: "http://0.0.0.0:4000"
});

async function main() {
  const chatCompletion = await openai.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-3.5-turbo',
    user_config: userConfig // # 👈 User config
  });
}

main();

Pass User LLM API Keys

Allows your users to pass in their OpenAI API key (any LiteLLM supported provider) to make requests

Here's how to do it:

import openai
client = openai.OpenAI(
    api_key="sk-1234",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
], 
    extra_body={"api_key": "my-bad-key"}) # 👈 User Key

print(response)

More examples:

Pass in the litellm_params (E.g. api_key, api_base, etc.) via the extra_body parameter in the OpenAI client.

import openai
client = openai.OpenAI(
    api_key="sk-1234",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
], 
    extra_body={
      "api_key": "my-azure-key",
      "api_base": "my-azure-base",
      "api_version": "my-azure-version"
    }) # 👈 User Key

print(response)

For JS, the OpenAI client accepts passing params in the create(..) body as normal.

const { OpenAI } = require('openai');

const openai = new OpenAI({
  apiKey: "sk-1234",
  baseURL: "http://0.0.0.0:4000"
});

async function main() {
  const chatCompletion = await openai.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-3.5-turbo',
    api_key: "my-bad-key" // 👈 User Key
  });
}

main();