litellm/docs/my-website/docs/vertex_ai.md
2024-08-03 17:58:20 -07:00

2.4 KiB

[BETA] Vertex AI Endpoints

Supported API Endpoints

  • Gemini API
  • Embeddings API
  • Imagen API
  • Code Completion API
  • Batch prediction API
  • Tuning API
  • CountTokens API

Quick Start Usage

1. Set default_vertex_config on your config.yaml

Add the following credentials to your litellm config.yaml to use the Vertex AI endpoints.

default_vertex_config:
  vertex_project: "adroit-crow-413218"
  vertex_location: "us-central1"
  vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json" # Add path to service account.json

2. Start litellm proxy

litellm --config /path/to/config.yaml

3. Test it

curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:countTokens \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{"instances":[{"content": "gm"}]}'

Usage Examples

Gemini API (Generate Content)

curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'

Embeddings API

curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:predict \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{"instances":[{"content": "gm"}]}'

Imagen API

curl http://localhost:4000/vertex-ai/publishers/google/models/imagen-3.0-generate-001:predict \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'

Count Tokens API

curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'

Tuning API

Create Fine Tuning Job

curl http://localhost:4000/vertex-ai/tuningJobs \
      -H "Content-Type: application/json" \
      -H "Authorization: Bearer sk-1234" \
      -d '{
  "baseModel": "gemini-1.0-pro-002",
  "supervisedTuningSpec" : {
      "training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
  }
}'