litellm/docs/my-website/docs/proxy/cost_tracking.md
2024-07-06 15:01:58 -07:00

16 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem'; import Image from '@theme/IdealImage';

💸 Spend Tracking

Track spend for keys, users, and teams across 100+ LLMs.

How to Track Spend with LiteLLM

Step 1

👉 Setup LiteLLM with a Database

Step2 Send /chat/completions request

import openai
client = openai.OpenAI(
    api_key="sk-1234",
    base_url="http://0.0.0.0:4000"
)

response = client.chat.completions.create(
    model="llama3",
    messages = [
        {
            "role": "user",
            "content": "this is a test request, write a short poem"
        }
    ],
    user="palantir",
    extra_body={
        "metadata": {
            "tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"]
        }
    }
)

print(response)

Pass metadata as part of the request body

curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Content-Type: application/json' \
    --header 'Authorization: Bearer sk-1234' \
    --data '{
    "model": "llama3",
    "messages": [
        {
        "role": "user",
        "content": "what llm are you"
        }
    ],
    "user": "palantir",
    "metadata": {
        "tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"]
    }
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os

os.environ["OPENAI_API_KEY"] = "sk-1234"

chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000",
    model = "llama3",
    user="palantir",
    extra_body={
        "metadata": {
            "tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"]
        }
    }
)

messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
response = chat(messages)

print(response)

Step3 - Verify Spend Tracked That's IT. Now Verify your spend was tracked

Expect to see x-litellm-response-cost in the response headers with calculated cost

<Image img={require('../../img/response_cost_img.png')} />

The following spend gets tracked in Table LiteLLM_SpendLogs

{
  "api_key": "fe6b0cab4ff5a5a8df823196cc8a450*****",                            # Hash of API Key used
  "user": "default_user",                                                       # Internal User (LiteLLM_UserTable) that owns `api_key=sk-1234`. 
  "team_id": "e8d1460f-846c-45d7-9b43-55f3cc52ac32",                            # Team (LiteLLM_TeamTable) that owns `api_key=sk-1234`
  "request_tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"],# Tags sent in request
  "end_user": "palantir",                                                       # Customer - the `user` sent in the request
  "model_group": "llama3",                                                      # "model" passed to LiteLLM
  "api_base": "https://api.groq.com/openai/v1/",                                # "api_base" of model used by LiteLLM
  "spend": 0.000002,                                                            # Spend in $
  "total_tokens": 100,
  "completion_tokens": 80,
  "prompt_tokens": 20,

}

Navigate to the Usage Tab on the LiteLLM UI (found on https://your-proxy-endpoint/ui) and verify you see spend tracked under Usage

<Image img={require('../../img/admin_ui_spend.png')} />

(Enterprise) API Endpoints to get Spend

Getting Spend Reports - To Charge Other Teams, Customers, Users

Use the /global/spend/report endpoint to get spend reports

Example Request

👉 Key Change: Specify group_by=team

curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=team' \
  -H 'Authorization: Bearer sk-1234'
Example Response
[
    {
        "group_by_day": "2024-04-30T00:00:00+00:00",
        "teams": [
            {
                "team_name": "Prod Team",
                "total_spend": 0.0015265,
                "metadata": [ # see the spend by unique(key + model)
                    {
                        "model": "gpt-4",
                        "spend": 0.00123,
                        "total_tokens": 28,
                        "api_key": "88dc28.." # the hashed api key
                    },
                    {
                        "model": "gpt-4",
                        "spend": 0.00123,
                        "total_tokens": 28,
                        "api_key": "a73dc2.." # the hashed api key
                    },
                    {
                        "model": "chatgpt-v-2",
                        "spend": 0.000214,
                        "total_tokens": 122,
                        "api_key": "898c28.." # the hashed api key
                    },
                    {
                        "model": "gpt-3.5-turbo",
                        "spend": 0.0000825,
                        "total_tokens": 85,
                        "api_key": "84dc28.." # the hashed api key
                    }
                ]
            }
        ]
    }
]
import requests
url = 'http://localhost:4000/global/spend/report'
params = {
    'start_date': '2023-04-01',
    'end_date': '2024-06-30'
}

headers = {
    'Authorization': 'Bearer sk-1234'
}

# Make the GET request
response = requests.get(url, headers=headers, params=params)
spend_report = response.json()

for row in spend_report:
  date = row["group_by_day"]
  teams = row["teams"]
  for team in teams:
      team_name = team["team_name"]
      total_spend = team["total_spend"]
      metadata = team["metadata"]

      print(f"Date: {date}")
      print(f"Team: {team_name}")
      print(f"Total Spend: {total_spend}")
      print("Metadata: ", metadata)
      print()

Output from script

# Date: 2024-05-11T00:00:00+00:00
# Team: local_test_team
# Total Spend: 0.003675099999999999
# Metadata:  [{'model': 'gpt-3.5-turbo', 'spend': 0.003675099999999999, 'api_key': 'b94d5e0bc3a71a573917fe1335dc0c14728c7016337451af9714924ff3a729db', 'total_tokens': 3105}]

# Date: 2024-05-13T00:00:00+00:00
# Team: Unassigned Team
# Total Spend: 3.4e-05
# Metadata:  [{'model': 'gpt-3.5-turbo', 'spend': 3.4e-05, 'api_key': '9569d13c9777dba68096dea49b0b03e0aaf4d2b65d4030eda9e8a2733c3cd6e0', 'total_tokens': 50}]

# Date: 2024-05-13T00:00:00+00:00
# Team: central
# Total Spend: 0.000684
# Metadata:  [{'model': 'gpt-3.5-turbo', 'spend': 0.000684, 'api_key': '0323facdf3af551594017b9ef162434a9b9a8ca1bbd9ccbd9d6ce173b1015605', 'total_tokens': 498}]

# Date: 2024-05-13T00:00:00+00:00
# Team: local_test_team
# Total Spend: 0.0005715000000000001
# Metadata:  [{'model': 'gpt-3.5-turbo', 'spend': 0.0005715000000000001, 'api_key': 'b94d5e0bc3a71a573917fe1335dc0c14728c7016337451af9714924ff3a729db', 'total_tokens': 423}]

:::info

Customer This is the value of user_id passed when calling /key/generate

this is user passed to /chat/completions request

:::

Example Request

👉 Key Change: Specify group_by=customer

curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=customer' \
  -H 'Authorization: Bearer sk-1234'
Example Response
[
    {
        "group_by_day": "2024-04-30T00:00:00+00:00",
        "customers": [
            {
                "customer": "palantir",
                "total_spend": 0.0015265,
                "metadata": [ # see the spend by unique(key + model)
                    {
                        "model": "gpt-4",
                        "spend": 0.00123,
                        "total_tokens": 28,
                        "api_key": "88dc28.." # the hashed api key
                    },
                    {
                        "model": "gpt-4",
                        "spend": 0.00123,
                        "total_tokens": 28,
                        "api_key": "a73dc2.." # the hashed api key
                    },
                    {
                        "model": "chatgpt-v-2",
                        "spend": 0.000214,
                        "total_tokens": 122,
                        "api_key": "898c28.." # the hashed api key
                    },
                    {
                        "model": "gpt-3.5-turbo",
                        "spend": 0.0000825,
                        "total_tokens": 85,
                        "api_key": "84dc28.." # the hashed api key
                    }
                ]
            }
        ]
    }
]

👉 Key Change: Specify api_key=sk-1234

curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&api_key=sk-1234' \
  -H 'Authorization: Bearer sk-1234'
Example Response
[
  {
    "api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
    "total_cost": 0.3201286305151999,
    "total_input_tokens": 36.0,
    "total_output_tokens": 1593.0,
    "model_details": [
      {
        "model": "dall-e-3",
        "total_cost": 0.31999939051519993,
        "total_input_tokens": 0,
        "total_output_tokens": 0
      },
      {
        "model": "llama3-8b-8192",
        "total_cost": 0.00012924,
        "total_input_tokens": 36,
        "total_output_tokens": 1593
      }
    ]
  }
]

:::info

Internal User (Key Owner): This is the value of user_id passed when calling /key/generate

:::

👉 Key Change: Specify internal_user_id=ishaan

curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-12-30&internal_user_id=ishaan' \
  -H 'Authorization: Bearer sk-1234'
Example Response
[
  {
    "api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
    "total_cost": 0.00013132,
    "total_input_tokens": 105.0,
    "total_output_tokens": 872.0,
    "model_details": [
      {
        "model": "gpt-3.5-turbo-instruct",
        "total_cost": 5.85e-05,
        "total_input_tokens": 15,
        "total_output_tokens": 18
      },
      {
        "model": "llama3-8b-8192",
        "total_cost": 7.282000000000001e-05,
        "total_input_tokens": 90,
        "total_output_tokens": 854
      }
    ]
  },
  {
    "api_key": "151e85e46ab8c9c7fad090793e3fe87940213f6ae665b543ca633b0b85ba6dc6",
    "total_cost": 5.2699999999999993e-05,
    "total_input_tokens": 26.0,
    "total_output_tokens": 27.0,
    "model_details": [
      {
        "model": "gpt-3.5-turbo",
        "total_cost": 5.2499999999999995e-05,
        "total_input_tokens": 24,
        "total_output_tokens": 27
      },
      {
        "model": "text-embedding-ada-002",
        "total_cost": 2e-07,
        "total_input_tokens": 2,
        "total_output_tokens": 0
      }
    ]
  },
  {
    "api_key": "60cb83a2dcbf13531bd27a25f83546ecdb25a1a6deebe62d007999dc00e1e32a",
    "total_cost": 9.42e-06,
    "total_input_tokens": 30.0,
    "total_output_tokens": 99.0,
    "model_details": [
      {
        "model": "llama3-8b-8192",
        "total_cost": 9.42e-06,
        "total_input_tokens": 30,
        "total_output_tokens": 99
      }
    ]
  }
]

Allowing Non-Proxy Admins to access /spend endpoints

Use this when you want non-proxy admins to access /spend endpoints

:::info

Schedule a meeting with us to get your Enterprise License

:::

Create Key

Create Key with with permissions={"get_spend_routes": true}

curl --location 'http://0.0.0.0:4000/key/generate' \
        --header 'Authorization: Bearer sk-1234' \
        --header 'Content-Type: application/json' \
        --data '{
            "permissions": {"get_spend_routes": true}
    }'
Use generated key on /spend endpoints

Access spend Routes with newly generate keys

curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
  -H 'Authorization: Bearer sk-H16BKvrSNConSsBYLGc_7A'

Reset Team, API Key Spend - MASTER KEY ONLY

Use /global/spend/reset if you want to:

  • Reset the Spend for all API Keys, Teams. The spend for ALL Teams and Keys in LiteLLM_TeamTable and LiteLLM_VerificationToken will be set to spend=0

  • LiteLLM will maintain all the logs in LiteLLMSpendLogs for Auditing Purposes

Request

Only the LITELLM_MASTER_KEY you set can access this route

curl -X POST \
  'http://localhost:4000/global/spend/reset' \
  -H 'Authorization: Bearer sk-1234' \
  -H 'Content-Type: application/json'
Expected Responses
{"message":"Spend for all API Keys and Teams reset successfully","status":"success"}

Spend Tracking for Azure OpenAI Models

Set base model for cost tracking azure image-gen call

Image Generation

model_list: 
  - model_name: dall-e-3
    litellm_params:
        model: azure/dall-e-3-test
        api_version: 2023-06-01-preview
        api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
        api_key: os.environ/AZURE_API_KEY
        base_model: dall-e-3 # 👈 set dall-e-3 as base model
    model_info:
        mode: image_generation

Chat Completions / Embeddings

Problem: Azure returns gpt-4 in the response when azure/gpt-4-1106-preview is used. This leads to inaccurate cost tracking

Solution : Set base_model on your config so litellm uses the correct model for calculating azure cost

Get the base model name from here

Example config with base_model

model_list:
  - model_name: azure-gpt-3.5
    litellm_params:
      model: azure/chatgpt-v-2
      api_base: os.environ/AZURE_API_BASE
      api_key: os.environ/AZURE_API_KEY
      api_version: "2023-07-01-preview"
    model_info:
      base_model: azure/gpt-4-1106-preview

Custom Input/Output Pricing

👉 Head to Custom Input/Output Pricing to setup custom pricing or your models

Custom k,v pairs

Log specific key,value pairs as part of the metadata for a spend log

:::info

Logging specific key,value pairs in spend logs metadata is an enterprise feature. See here

:::

Custom Tags

:::info

Tracking spend with Custom tags is an enterprise feature. See here

:::