litellm/docs/my-website/docs/providers/custom.md
ishaan-jaff cb92c20cbb docs
2023-09-05 17:04:45 -07:00

1.9 KiB

Custom LLM API-Endpoints

LiteLLM supports Custom deploy api endpoints

LiteLLM Expects the following input and output for custom LLM API endpoints

Input

Inputs to your custom LLM api bases should follow this format:

resp = requests.post(
    your-api_base, 
    json={
        'model': 'meta-llama/Llama-2-13b-hf', # model name
        'params': {
            'prompt': ["The capital of France is P"],
            'max_tokens': 32,
            'temperature': 0.7,
            'top_p': 1.0,
            'top_k': 40,
        }
    }
)

Output

Outputs from your custom LLM api bases should follow this format:
""" { 'data': [ { 'prompt': 'The capital of France is P', 'output': [ 'The capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France' ], 'params': { 'temperature': 0.7, 'top_k': 40, 'top_p': 1 } } ], 'message': 'ok' } """

Model Details

For calls to your custom API base ensure:

  • Set api_base="your-api-base"
  • Add custom/ as a prefix to the model param. If your API expects meta-llama/Llama-2-13b-hf set model=custom/meta-llama/Llama-2-13b-hf
Model Name Function Call
meta-llama/Llama-2-13b-hf response = completion(model="custom/meta-llama/Llama-2-13b-hf", messages=messages, api_base="https://your-custom-inference-endpoint")