1.9 KiB
Custom LLM API-Endpoints
LiteLLM supports Custom deploy api endpoints
LiteLLM Expects the following input and output for custom LLM API endpoints
Input
Inputs to your custom LLM api bases should follow this format:
resp = requests.post(
your-api_base,
json={
'model': 'meta-llama/Llama-2-13b-hf', # model name
'params': {
'prompt': ["The capital of France is P"],
'max_tokens': 32,
'temperature': 0.7,
'top_p': 1.0,
'top_k': 40,
}
}
)
Output
Outputs from your custom LLM api bases should follow this format:
"""
{
'data': [
{
'prompt': 'The capital of France is P',
'output': [
'The capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France'
],
'params': {
'temperature': 0.7,
'top_k': 40,
'top_p': 1
}
}
],
'message': 'ok'
}
"""
Model Details
For calls to your custom API base ensure:
- Set
api_base="your-api-base"
- Add
custom/
as a prefix to themodel
param. If your API expectsmeta-llama/Llama-2-13b-hf
setmodel=custom/meta-llama/Llama-2-13b-hf
Model Name | Function Call |
---|---|
meta-llama/Llama-2-13b-hf | response = completion(model="custom/meta-llama/Llama-2-13b-hf", messages=messages, api_base="https://your-custom-inference-endpoint") |