forked from phoenix/litellm-mirror
67 lines
No EOL
1.5 KiB
Markdown
67 lines
No EOL
1.5 KiB
Markdown
import Image from '@theme/IdealImage';
|
|
import Tabs from '@theme/Tabs';
|
|
import TabItem from '@theme/TabItem';
|
|
|
|
# Argilla
|
|
|
|
Argilla is a tool for annotating datasets.
|
|
|
|
|
|
|
|
## Usage
|
|
|
|
<Tabs>
|
|
<Tab value="sdk" label="SDK">
|
|
|
|
```python
|
|
from litellm import completion
|
|
import litellm
|
|
import os
|
|
|
|
# add env vars
|
|
os.environ["ARGILLA_API_KEY"]="argilla.apikey"
|
|
os.environ["ARGILLA_BASE_URL"]="http://localhost:6900"
|
|
os.environ["ARGILLA_DATASET_NAME"]="my_second_dataset"
|
|
os.environ["OPENAI_API_KEY"]="sk-proj-..."
|
|
|
|
litellm.callbacks = ["argilla"]
|
|
|
|
# add argilla transformation object
|
|
litellm.argilla_transformation_object = {
|
|
"user_input": "messages", # 👈 key= argilla field, value = either message (argilla.ChatField) | response (argilla.TextField)
|
|
"llm_output": "response"
|
|
}
|
|
|
|
## LLM CALL ##
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
|
)
|
|
```
|
|
|
|
</Tab>
|
|
|
|
<Tab value="proxy" label="PROXY">
|
|
|
|
```yaml
|
|
litellm_settings:
|
|
callbacks: ["argilla"]
|
|
argilla_transformation_object:
|
|
user_input: "messages" # 👈 key= argilla field, value = either message (argilla.ChatField) | response (argilla.TextField)
|
|
llm_output: "response"
|
|
```
|
|
|
|
</Tab>
|
|
</Tabs>
|
|
|
|
## Example Output
|
|
|
|
<Image img={require('../../img/argilla.png')} />
|
|
|
|
## Add sampling rate to Argilla calls
|
|
|
|
To just log a sample of calls to argilla, add `ARGILLA_SAMPLING_RATE` to your env vars.
|
|
|
|
```bash
|
|
ARGILLA_SAMPLING_RATE=0.1 # log 10% of calls to argilla
|
|
``` |