litellm/docs/my-website/docs/rules.md
2023-11-20 19:14:07 -08:00

89 lines
No EOL
2.7 KiB
Markdown

# Rules
Use this to fail a request based on the input or output of an llm api call.
```python
import litellm
import os
# set env vars
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENROUTER_API_KEY"] = "your-api-key"
def my_custom_rule(input): # receives the model response
if "i don't think i can answer" in input: # trigger fallback if the model refuses to answer
return False
return True
litellm.post_call_rules = [my_custom_rule] # have these be functions that can be called to fail a call
response = litellm.completion(model="gpt-3.5-turbo", messages=[{"role": "user",
"content": "Hey, how's it going?"}], fallbacks=["openrouter/gryphe/mythomax-l2-13b"])
```
## Available Endpoints
* `litellm.pre_call_rules = []` - A list of functions to iterate over before making the api call. Each function is expected to return either True (allow call) or False (fail call).
* `litellm.post_call_rules = []` - List of functions to iterate over before making the api call. Each function is expected to return either True (allow call) or False (fail call).
## Expected format of rule
```python
def my_custom_rule(input: str) -> bool: # receives the model response
if "i don't think i can answer" in input: # trigger fallback if the model refuses to answer
return False
return True
```
#### Inputs
* `input`: *str*: The user input or llm response.
#### Outputs
* `bool`: Return True (allow call) or False (fail call)
## Example Rules
### Example 1: Fail if user input is too long
```python
import litellm
import os
# set env vars
os.environ["OPENAI_API_KEY"] = "your-api-key"
def my_custom_rule(input): # receives the model response
if len(input) > 10: # fail call if too long
return False
return True
litellm.pre_call_rules = [my_custom_rule] # have these be functions that can be called to fail a call
response = litellm.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}])
```
### Example 2: Fallback to uncensored model if llm refuses to answer
```python
import litellm
import os
# set env vars
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENROUTER_API_KEY"] = "your-api-key"
def my_custom_rule(input): # receives the model response
if "i don't think i can answer" in input: # trigger fallback if the model refuses to answer
return False
return True
litellm.post_call_rules = [my_custom_rule] # have these be functions that can be called to fail a call
response = litellm.completion(model="gpt-3.5-turbo", messages=[{"role": "user",
"content": "Hey, how's it going?"}], fallbacks=["openrouter/gryphe/mythomax-l2-13b"])
```