litellm/docs/my-website/docs/providers/nvidia_nim.md
Ishaan Jaff d92696a303
(feat) add nvidia nim embeddings (#6032)
* nvidia nim support embedding config

* add nvidia config in init

* nvidia nim embeddings

* docs nvidia nim embeddings

* docs embeddings on nvidia nim

* fix llm translation test
2024-10-03 17:12:14 +05:30

6.7 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

Nvidia NIM

https://docs.api.nvidia.com/nim/reference/

:::tip

We support ALL Nvidia NIM models, just set model=nvidia_nim/<any-model-on-nvidia_nim> as a prefix when sending litellm requests

:::

API Key

# env variable
os.environ['NVIDIA_NIM_API_KEY']

Sample Usage

from litellm import completion
import os

os.environ['NVIDIA_NIM_API_KEY'] = ""
response = completion(
    model="nvidia_nim/meta/llama3-70b-instruct",
    messages=[
        {
            "role": "user",
            "content": "What's the weather like in Boston today in Fahrenheit?",
        }
    ],
    temperature=0.2,        # optional
    top_p=0.9,              # optional
    frequency_penalty=0.1,  # optional
    presence_penalty=0.1,   # optional
    max_tokens=10,          # optional
    stop=["\n\n"],          # optional
)
print(response)

Sample Usage - Streaming

from litellm import completion
import os

os.environ['NVIDIA_NIM_API_KEY'] = ""
response = completion(
    model="nvidia_nim/meta/llama3-70b-instruct",
    messages=[
        {
            "role": "user",
            "content": "What's the weather like in Boston today in Fahrenheit?",
        }
    ],
    stream=True,
    temperature=0.2,        # optional
    top_p=0.9,              # optional
    frequency_penalty=0.1,  # optional
    presence_penalty=0.1,   # optional
    max_tokens=10,          # optional
    stop=["\n\n"],          # optional
)

for chunk in response:
    print(chunk)

Usage - embedding

import litellm
import os

response = litellm.embedding(
    model="nvidia_nim/nvidia/nv-embedqa-e5-v5",               # add `nvidia_nim/` prefix to model so litellm knows to route to Nvidia NIM
    input=["good morning from litellm"],
    encoding_format = "float", 
    user_id = "user-1234",

    # Nvidia NIM Specific Parameters
    input_type = "passage", # Optional
    truncate = "NONE" # Optional
)
print(response)

Usage - LiteLLM Proxy Server

Here's how to call an Nvidia NIM Endpoint with the LiteLLM Proxy Server

  1. Modify the config.yaml
model_list:
  - model_name: my-model
    litellm_params:
      model: nvidia_nim/<your-model-name>  # add nvidia_nim/ prefix to route as Nvidia NIM provider
      api_key: api-key                 # api key to send your model
  1. Start the proxy
$ litellm --config /path/to/config.yaml
  1. Send Request to LiteLLM Proxy Server
import openai
client = openai.OpenAI(
    api_key="sk-1234",             # pass litellm proxy key, if you're using virtual keys
    base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)

response = client.chat.completions.create(
    model="my-model",
    messages = [
        {
            "role": "user",
            "content": "what llm are you"
        }
    ],
)

print(response)
curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Authorization: Bearer sk-1234' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "my-model",
    "messages": [
        {
        "role": "user",
        "content": "what llm are you"
        }
    ],
}'

Supported Models - 💥 ALL Nvidia NIM Models Supported!

We support ALL nvidia_nim models, just set nvidia_nim/ as a prefix when sending completion requests

Model Name Function Call
nvidia/nemotron-4-340b-reward completion(model="nvidia_nim/nvidia/nemotron-4-340b-reward", messages)
01-ai/yi-large completion(model="nvidia_nim/01-ai/yi-large", messages)
aisingapore/sea-lion-7b-instruct completion(model="nvidia_nim/aisingapore/sea-lion-7b-instruct", messages)
databricks/dbrx-instruct completion(model="nvidia_nim/databricks/dbrx-instruct", messages)
google/gemma-7b completion(model="nvidia_nim/google/gemma-7b", messages)
google/gemma-2b completion(model="nvidia_nim/google/gemma-2b", messages)
google/codegemma-1.1-7b completion(model="nvidia_nim/google/codegemma-1.1-7b", messages)
google/codegemma-7b completion(model="nvidia_nim/google/codegemma-7b", messages)
google/recurrentgemma-2b completion(model="nvidia_nim/google/recurrentgemma-2b", messages)
ibm/granite-34b-code-instruct completion(model="nvidia_nim/ibm/granite-34b-code-instruct", messages)
ibm/granite-8b-code-instruct completion(model="nvidia_nim/ibm/granite-8b-code-instruct", messages)
mediatek/breeze-7b-instruct completion(model="nvidia_nim/mediatek/breeze-7b-instruct", messages)
meta/codellama-70b completion(model="nvidia_nim/meta/codellama-70b", messages)
meta/llama2-70b completion(model="nvidia_nim/meta/llama2-70b", messages)
meta/llama3-8b completion(model="nvidia_nim/meta/llama3-8b", messages)
meta/llama3-70b completion(model="nvidia_nim/meta/llama3-70b", messages)
microsoft/phi-3-medium-4k-instruct completion(model="nvidia_nim/microsoft/phi-3-medium-4k-instruct", messages)
microsoft/phi-3-mini-128k-instruct completion(model="nvidia_nim/microsoft/phi-3-mini-128k-instruct", messages)
microsoft/phi-3-mini-4k-instruct completion(model="nvidia_nim/microsoft/phi-3-mini-4k-instruct", messages)
microsoft/phi-3-small-128k-instruct completion(model="nvidia_nim/microsoft/phi-3-small-128k-instruct", messages)
microsoft/phi-3-small-8k-instruct completion(model="nvidia_nim/microsoft/phi-3-small-8k-instruct", messages)
mistralai/codestral-22b-instruct-v0.1 completion(model="nvidia_nim/mistralai/codestral-22b-instruct-v0.1", messages)
mistralai/mistral-7b-instruct completion(model="nvidia_nim/mistralai/mistral-7b-instruct", messages)
mistralai/mistral-7b-instruct-v0.3 completion(model="nvidia_nim/mistralai/mistral-7b-instruct-v0.3", messages)
mistralai/mixtral-8x7b-instruct completion(model="nvidia_nim/mistralai/mixtral-8x7b-instruct", messages)
mistralai/mixtral-8x22b-instruct completion(model="nvidia_nim/mistralai/mixtral-8x22b-instruct", messages)
mistralai/mistral-large completion(model="nvidia_nim/mistralai/mistral-large", messages)
nvidia/nemotron-4-340b-instruct completion(model="nvidia_nim/nvidia/nemotron-4-340b-instruct", messages)
seallms/seallm-7b-v2.5 completion(model="nvidia_nim/seallms/seallm-7b-v2.5", messages)
snowflake/arctic completion(model="nvidia_nim/snowflake/arctic", messages)
upstage/solar-10.7b-instruct completion(model="nvidia_nim/upstage/solar-10.7b-instruct", messages)