forked from phoenix/litellm-mirror
163 lines
4.3 KiB
Markdown
163 lines
4.3 KiB
Markdown
# OpenAI (Text Completion)
|
|
|
|
LiteLLM supports OpenAI text completion models
|
|
|
|
### Required API Keys
|
|
|
|
```python
|
|
import os
|
|
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
|
```
|
|
|
|
### Usage
|
|
```python
|
|
import os
|
|
from litellm import completion
|
|
|
|
os.environ["OPENAI_API_KEY"] = "your-api-key"
|
|
|
|
# openai call
|
|
response = completion(
|
|
model = "gpt-3.5-turbo-instruct",
|
|
messages=[{ "content": "Hello, how are you?","role": "user"}]
|
|
)
|
|
```
|
|
|
|
### Usage - LiteLLM Proxy Server
|
|
|
|
Here's how to call OpenAI models with the LiteLLM Proxy Server
|
|
|
|
### 1. Save key in your environment
|
|
|
|
```bash
|
|
export OPENAI_API_KEY=""
|
|
```
|
|
|
|
### 2. Start the proxy
|
|
|
|
<Tabs>
|
|
<TabItem value="config" label="config.yaml">
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: gpt-3.5-turbo
|
|
litellm_params:
|
|
model: openai/gpt-3.5-turbo # The `openai/` prefix will call openai.chat.completions.create
|
|
api_key: os.environ/OPENAI_API_KEY
|
|
- model_name: gpt-3.5-turbo-instruct
|
|
litellm_params:
|
|
model: text-completion-openai/gpt-3.5-turbo-instruct # The `text-completion-openai/` prefix will call openai.completions.create
|
|
api_key: os.environ/OPENAI_API_KEY
|
|
```
|
|
</TabItem>
|
|
<TabItem value="config-*" label="config.yaml - proxy all OpenAI models">
|
|
|
|
Use this to add all openai models with one API Key. **WARNING: This will not do any load balancing**
|
|
This means requests to `gpt-4`, `gpt-3.5-turbo` , `gpt-4-turbo-preview` will all go through this route
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: "*" # all requests where model not in your config go to this deployment
|
|
litellm_params:
|
|
model: openai/* # set `openai/` to use the openai route
|
|
api_key: os.environ/OPENAI_API_KEY
|
|
```
|
|
</TabItem>
|
|
<TabItem value="cli" label="CLI">
|
|
|
|
```bash
|
|
$ litellm --model gpt-3.5-turbo-instruct
|
|
|
|
# Server running on http://0.0.0.0:4000
|
|
```
|
|
</TabItem>
|
|
|
|
</Tabs>
|
|
|
|
### 3. Test it
|
|
|
|
|
|
<Tabs>
|
|
<TabItem value="Curl" label="Curl Request">
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo-instruct",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
]
|
|
}
|
|
'
|
|
```
|
|
</TabItem>
|
|
<TabItem value="openai" label="OpenAI v1.0.0+">
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(model="gpt-3.5-turbo-instruct", messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, write a short poem"
|
|
}
|
|
])
|
|
|
|
print(response)
|
|
|
|
```
|
|
</TabItem>
|
|
<TabItem value="langchain" label="Langchain">
|
|
|
|
```python
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
)
|
|
from langchain.schema import HumanMessage, SystemMessage
|
|
|
|
chat = ChatOpenAI(
|
|
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
|
|
model = "gpt-3.5-turbo-instruct",
|
|
temperature=0.1
|
|
)
|
|
|
|
messages = [
|
|
SystemMessage(
|
|
content="You are a helpful assistant that im using to make a test request to."
|
|
),
|
|
HumanMessage(
|
|
content="test from litellm. tell me why it's amazing in 1 sentence"
|
|
),
|
|
]
|
|
response = chat(messages)
|
|
|
|
print(response)
|
|
```
|
|
</TabItem>
|
|
</Tabs>
|
|
|
|
|
|
## OpenAI Text Completion Models / Instruct Models
|
|
|
|
| Model Name | Function Call |
|
|
|---------------------|----------------------------------------------------|
|
|
| gpt-3.5-turbo-instruct | `response = completion(model="gpt-3.5-turbo-instruct", messages=messages)` |
|
|
| gpt-3.5-turbo-instruct-0914 | `response = completion(model="gpt-3.5-turbo-instruct-0914", messages=messages)` |
|
|
| text-davinci-003 | `response = completion(model="text-davinci-003", messages=messages)` |
|
|
| ada-001 | `response = completion(model="ada-001", messages=messages)` |
|
|
| curie-001 | `response = completion(model="curie-001", messages=messages)` |
|
|
| babbage-001 | `response = completion(model="babbage-001", messages=messages)` |
|
|
| babbage-002 | `response = completion(model="babbage-002", messages=messages)` |
|
|
| davinci-002 | `response = completion(model="davinci-002", messages=messages)` |
|