mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat: register embedding models for ollama, together, fireworks (#1190)
# What does this PR do? We have support for embeddings in our Inference providers, but so far we haven't done the final step of actually registering the known embedding models and making sure they are extremely easy to use. This is one step towards that. ## Test Plan Run existing inference tests. ```bash $ cd llama_stack/providers/tests/inference $ pytest -s -v -k fireworks test_embeddings.py \ --inference-model nomic-ai/nomic-embed-text-v1.5 --env EMBEDDING_DIMENSION=784 $ pytest -s -v -k together test_embeddings.py \ --inference-model togethercomputer/m2-bert-80M-8k-retrieval --env EMBEDDING_DIMENSION=784 $ pytest -s -v -k ollama test_embeddings.py \ --inference-model all-minilm:latest --env EMBEDDING_DIMENSION=784 ``` The value of the EMBEDDING_DIMENSION isn't actually used in these tests, it is merely used by the test fixtures to check if the model is an LLM or Embedding.
This commit is contained in:
parent
736560ceba
commit
9436dd570d
18 changed files with 214 additions and 105 deletions
|
@ -88,6 +88,7 @@ repos:
|
|||
pass_filenames: false
|
||||
require_serial: true
|
||||
files: ^llama_stack/templates/.*$
|
||||
files: ^llama_stack/providers/.*/inference/.*/models\.py$
|
||||
|
||||
ci:
|
||||
autofix_commit_msg: 🎨 [pre-commit.ci] Auto format from pre-commit.com hooks
|
||||
|
|
|
@ -47,6 +47,7 @@ The following models are available by default:
|
|||
- `meta-llama/Llama-3.3-70B-Instruct (accounts/fireworks/models/llama-v3p3-70b-instruct)`
|
||||
- `meta-llama/Llama-Guard-3-8B (accounts/fireworks/models/llama-guard-3-8b)`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision (accounts/fireworks/models/llama-guard-3-11b-vision)`
|
||||
- `nomic-ai/nomic-embed-text-v1.5 (nomic-ai/nomic-embed-text-v1.5)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
@ -46,6 +46,8 @@ The following models are available by default:
|
|||
- `meta-llama/Llama-3.3-70B-Instruct`
|
||||
- `meta-llama/Llama-Guard-3-8B`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision`
|
||||
- `togethercomputer/m2-bert-80M-8k-retrieval`
|
||||
- `togethercomputer/m2-bert-80M-32k-retrieval`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
@ -4,8 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.models.llama.datatypes import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ProviderModelEntry,
|
||||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
|
@ -50,4 +52,12 @@ MODEL_ENTRIES = [
|
|||
"accounts/fireworks/models/llama-guard-3-11b-vision",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="nomic-ai/nomic-embed-text-v1.5",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimensions": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
]
|
||||
|
|
103
llama_stack/providers/remote/inference/ollama/models.py
Normal file
103
llama_stack/providers/remote/inference/ollama/models.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.models.llama.datatypes import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ProviderModelEntry,
|
||||
build_hf_repo_model_entry,
|
||||
build_model_entry,
|
||||
)
|
||||
|
||||
model_entries = [
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1:8b-instruct-fp16",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.1:8b",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1:70b-instruct-fp16",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.1:70b",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1:405b-instruct-fp16",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.1:405b",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2:1b-instruct-fp16",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2:1b",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2:3b-instruct-fp16",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2:3b",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2-vision:11b-instruct-fp16",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2-vision:latest",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2-vision:90b-instruct-fp16",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2-vision:90b",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.3:70b",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
# The Llama Guard models don't have their full fp16 versions
|
||||
# so we are going to alias their default version to the canonical SKU
|
||||
build_hf_repo_model_entry(
|
||||
"llama-guard3:8b",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama-guard3:1b",
|
||||
CoreModelId.llama_guard_3_1b.value,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="all-minilm:latest",
|
||||
aliases=["all-minilm"],
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimensions": 384,
|
||||
"context_length": 512,
|
||||
},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="nomic-embed-text",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimensions": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
]
|
|
@ -31,12 +31,9 @@ from llama_stack.apis.inference import (
|
|||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.models.llama.datatypes import CoreModelId
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
build_hf_repo_model_entry,
|
||||
build_model_entry,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
|
@ -56,80 +53,9 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
request_has_media,
|
||||
)
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
from .models import model_entries
|
||||
|
||||
model_entries = [
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1:8b-instruct-fp16",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.1:8b",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1:70b-instruct-fp16",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.1:70b",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1:405b-instruct-fp16",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.1:405b",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2:1b-instruct-fp16",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2:1b",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2:3b-instruct-fp16",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2:3b",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2-vision:11b-instruct-fp16",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2-vision:latest",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2-vision:90b-instruct-fp16",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"llama3.2-vision:90b",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.3:70b",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
# The Llama Guard models don't have their full fp16 versions
|
||||
# so we are going to alias their default version to the canonical SKU
|
||||
build_hf_repo_model_entry(
|
||||
"llama-guard3:8b",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama-guard3:1b",
|
||||
CoreModelId.llama_guard_3_1b.value,
|
||||
),
|
||||
]
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||
|
@ -348,22 +274,17 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
async def check_model_availability(model_id: str):
|
||||
if model.model_type == ModelType.embedding:
|
||||
response = await self.client.list()
|
||||
else:
|
||||
response = await self.client.ps()
|
||||
available_models = [m["model"] for m in response["models"]]
|
||||
if model_id not in available_models:
|
||||
if model.provider_resource_id not in available_models:
|
||||
raise ValueError(
|
||||
f"Model '{model_id}' is not available in Ollama. Available models: {', '.join(available_models)}"
|
||||
f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}"
|
||||
)
|
||||
|
||||
if model.model_type == ModelType.embedding:
|
||||
await check_model_availability(model.provider_resource_id)
|
||||
return model
|
||||
|
||||
model = await self.register_helper.register_model(model)
|
||||
await check_model_availability(model.provider_resource_id)
|
||||
|
||||
return model
|
||||
return await self.register_helper.register_model(model)
|
||||
|
||||
|
||||
async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]:
|
||||
|
|
|
@ -4,8 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.models.llama.datatypes import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ProviderModelEntry,
|
||||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
|
@ -46,4 +48,20 @@ MODEL_ENTRIES = [
|
|||
"meta-llama/Llama-Guard-3-11B-Vision-Turbo",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="togethercomputer/m2-bert-80M-8k-retrieval",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimensions": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="togethercomputer/m2-bert-80M-32k-retrieval",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimensions": 768,
|
||||
"context_length": 32768,
|
||||
},
|
||||
),
|
||||
]
|
||||
|
|
|
@ -20,7 +20,7 @@ from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
|
|||
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.groq import GroqConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
||||
from llama_stack.providers.remote.inference.ollama import DEFAULT_OLLAMA_URL, OllamaImplConfig
|
||||
from llama_stack.providers.remote.inference.sambanova import SambaNovaImplConfig
|
||||
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
|
||||
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
||||
|
@ -89,7 +89,7 @@ def inference_ollama() -> ProviderFixture:
|
|||
Provider(
|
||||
provider_id="ollama",
|
||||
provider_type="remote::ollama",
|
||||
config=OllamaImplConfig(url=get_env_or_fail("OLLAMA_URL")).model_dump(),
|
||||
config=OllamaImplConfig(url=os.getenv("OLLAMA_URL", DEFAULT_OLLAMA_URL)).model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List, Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
@ -23,6 +23,7 @@ class ProviderModelEntry(BaseModel):
|
|||
aliases: List[str] = Field(default_factory=list)
|
||||
llama_model: Optional[str] = None
|
||||
model_type: ModelType = ModelType.llm
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
def get_huggingface_repo(model_descriptor: str) -> Optional[str]:
|
||||
|
@ -47,6 +48,7 @@ def build_model_entry(provider_model_id: str, model_descriptor: str) -> Provider
|
|||
provider_model_id=provider_model_id,
|
||||
aliases=[],
|
||||
llama_model=model_descriptor,
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
|
||||
|
||||
|
@ -54,14 +56,16 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
def __init__(self, model_entries: List[ProviderModelEntry]):
|
||||
self.alias_to_provider_id_map = {}
|
||||
self.provider_id_to_llama_model_map = {}
|
||||
for alias_obj in model_entries:
|
||||
for alias in alias_obj.aliases:
|
||||
self.alias_to_provider_id_map[alias] = alias_obj.provider_model_id
|
||||
for entry in model_entries:
|
||||
for alias in entry.aliases:
|
||||
self.alias_to_provider_id_map[alias] = entry.provider_model_id
|
||||
|
||||
# also add a mapping from provider model id to itself for easy lookup
|
||||
self.alias_to_provider_id_map[alias_obj.provider_model_id] = alias_obj.provider_model_id
|
||||
# ensure we can go from llama model to provider model id
|
||||
self.alias_to_provider_id_map[alias_obj.llama_model] = alias_obj.provider_model_id
|
||||
self.provider_id_to_llama_model_map[alias_obj.provider_model_id] = alias_obj.llama_model
|
||||
self.alias_to_provider_id_map[entry.provider_model_id] = entry.provider_model_id
|
||||
|
||||
if entry.llama_model:
|
||||
self.alias_to_provider_id_map[entry.llama_model] = entry.provider_model_id
|
||||
self.provider_id_to_llama_model_map[entry.provider_model_id] = entry.llama_model
|
||||
|
||||
def get_provider_model_id(self, identifier: str) -> Optional[str]:
|
||||
return self.alias_to_provider_id_map.get(identifier, None)
|
||||
|
|
|
@ -63,9 +63,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
core_model_to_hf_repo = {m.descriptor(): m.huggingface_repo for m in all_registered_models()}
|
||||
default_models = [
|
||||
ModelInput(
|
||||
model_id=core_model_to_hf_repo[m.llama_model],
|
||||
model_id=core_model_to_hf_repo[m.llama_model] if m.llama_model else m.provider_model_id,
|
||||
provider_model_id=m.provider_model_id,
|
||||
provider_id="fireworks",
|
||||
metadata=m.metadata,
|
||||
model_type=m.model_type,
|
||||
)
|
||||
for m in MODEL_ENTRIES
|
||||
]
|
||||
|
|
|
@ -149,6 +149,13 @@ models:
|
|||
provider_id: fireworks
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimensions: 768
|
||||
context_length: 8192
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
provider_id: fireworks
|
||||
provider_model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
|
|
|
@ -143,6 +143,13 @@ models:
|
|||
provider_id: fireworks
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimensions: 768
|
||||
context_length: 8192
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
provider_id: fireworks
|
||||
provider_model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
|
|
|
@ -71,7 +71,8 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
)
|
||||
embedding_model = ModelInput(
|
||||
model_id="all-MiniLM-L6-v2",
|
||||
provider_id="sentence-transformers",
|
||||
provider_id="ollama",
|
||||
provider_model_id="all-minilm:latest",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
|
|
|
@ -110,7 +110,8 @@ models:
|
|||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
provider_id: ollama
|
||||
provider_model_id: all-minilm:latest
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
|
|
|
@ -103,7 +103,8 @@ models:
|
|||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
provider_id: ollama
|
||||
provider_model_id: all-minilm:latest
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
|
|
|
@ -144,6 +144,20 @@ models:
|
|||
provider_id: together
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimensions: 768
|
||||
context_length: 8192
|
||||
model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
provider_id: together
|
||||
provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimensions: 768
|
||||
context_length: 32768
|
||||
model_id: togethercomputer/m2-bert-80M-32k-retrieval
|
||||
provider_id: together
|
||||
provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
|
|
|
@ -138,6 +138,20 @@ models:
|
|||
provider_id: together
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimensions: 768
|
||||
context_length: 8192
|
||||
model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
provider_id: together
|
||||
provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimensions: 768
|
||||
context_length: 32768
|
||||
model_id: togethercomputer/m2-bert-80M-32k-retrieval
|
||||
provider_id: together
|
||||
provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
|
|
|
@ -61,9 +61,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
core_model_to_hf_repo = {m.descriptor(): m.huggingface_repo for m in all_registered_models()}
|
||||
default_models = [
|
||||
ModelInput(
|
||||
model_id=core_model_to_hf_repo[m.llama_model],
|
||||
model_id=core_model_to_hf_repo[m.llama_model] if m.llama_model else m.provider_model_id,
|
||||
provider_model_id=m.provider_model_id,
|
||||
provider_id="together",
|
||||
metadata=m.metadata,
|
||||
model_type=m.model_type,
|
||||
)
|
||||
for m in MODEL_ENTRIES
|
||||
]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue