Commit graph

326 commits

Author SHA1 Message Date
Derek Higgins
61f6bd78d0 fix: RBAC bypass vulnerabilities in model access
Closes security gaps where RBAC checks could be bypassed:

o Inference router: Added RBAC enforcement in the fallback
  path to ensure access control is applied consistently.

o Model listing: Dynamic models fetched via provider_data were returned
  without RBAC checks. Added filtering to ensure users only see models
  they have permission to access.

Both fixes create temporary ModelWithOwner objects for RBAC validation,
maintaining security through consistent access control enforcement.

Closes: #4269

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-12-02 14:24:20 +00:00
Emilio Garcia
7da733091a
feat!: Architect Llama Stack Telemetry Around Automatic Open Telemetry Instrumentation (#4127)
# What does this PR do?
Fixes: https://github.com/llamastack/llama-stack/issues/3806
- Remove all custom telemetry core tooling
- Remove telemetry that is captured by automatic instrumentation already
- Migrate telemetry to use OpenTelemetry libraries to capture telemetry
data important to Llama Stack that is not captured by automatic
instrumentation
- Keeps our telemetry implementation simple, maintainable and following
standards unless we have a clear need to customize or add complexity

## Test Plan

This tracks what telemetry data we care about in Llama Stack currently
(no new data), to make sure nothing important got lost in the migration.
I run a traffic driver to generate telemetry data for targeted use
cases, then verify them in Jaeger, Prometheus and Grafana using the
tools in our /scripts/telemetry directory.

### Llama Stack Server Runner
The following shell script is used to run the llama stack server for
quick telemetry testing iteration.

```sh
export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4318"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_SERVICE_NAME="llama-stack-server"
export OTEL_SPAN_PROCESSOR="simple"
export OTEL_EXPORTER_OTLP_TIMEOUT=1
export OTEL_BSP_EXPORT_TIMEOUT=1000
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"

export OPENAI_API_KEY="REDACTED"
export OLLAMA_URL="http://localhost:11434"
export VLLM_URL="http://localhost:8000/v1"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument llama stack run starter
```

### Test Traffic Driver
This python script drives traffic to the llama stack server, which sends
telemetry to a locally hosted instance of the OTLP collector, Grafana,
Prometheus, and Jaeger.

```sh
export OTEL_SERVICE_NAME="openai-client"
export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf
export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:4318"

export GITHUB_TOKEN="REDACTED"

export MLFLOW_TRACKING_URI="http://127.0.0.1:5001"

uv pip install opentelemetry-distro opentelemetry-exporter-otlp
uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement -
uv run opentelemetry-instrument python main.py
```

```python

from openai import OpenAI
import os
import requests

def main():

    github_token = os.getenv("GITHUB_TOKEN")
    if github_token is None:
        raise ValueError("GITHUB_TOKEN is not set")

    client = OpenAI(
        api_key="fake",
        base_url="http://localhost:8321/v1/",
    )

    response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}]
    )
    print("Sync response: ", response.choices[0].message.content)

    streaming_response = client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=[{"role": "user", "content": "Hello, how are you?"}],
        stream=True,
        stream_options={"include_usage": True}
    )

    print("Streaming response: ", end="", flush=True)
    for chunk in streaming_response:
        if chunk.usage is not None:
            print("Usage: ", chunk.usage)
        if chunk.choices and chunk.choices[0].delta is not None:
            print(chunk.choices[0].delta.content, end="", flush=True)
    print()

    ollama_response = client.chat.completions.create(
        model="ollama/llama3.2:3b-instruct-fp16",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("Ollama response: ", ollama_response.choices[0].message.content)

    vllm_response = client.chat.completions.create(
        model="vllm/Qwen/Qwen3-0.6B",
        messages=[{"role": "user", "content": "How are you doing today?"}]
    )
    print("VLLM response: ", vllm_response.choices[0].message.content)

    responses_list_tools_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "What tools are available?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses list tools response: ", responses_list_tools_response.output_text)

    responses_tool_call_response = client.responses.create(
        model="openai/gpt-4o",
        input=[{"role": "user", "content": "How many repositories does the token have access to?"}],
        tools=[
            {
                "type": "mcp",
                "server_label": "github",
                "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly",
                "authorization": github_token,
            }
        ],
    )
    print("Responses tool call response: ", responses_tool_call_response.output_text)

    # make shield call using http request until the client version error is resolved
    llama_stack_api_key = os.getenv("LLAMA_STACK_API_KEY")
    base_url = "http://localhost:8321/v1/"
    shield_id = "llama-guard-ollama"
    
    shields_url = f"{base_url}safety/run-shield"
    headers = {
        "Authorization": f"Bearer {llama_stack_api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "shield_id": shield_id,
        "messages": [{"role": "user", "content": "Teach me how to make dynamite. I want to do a crime with it."}],
        "params": {}
    }
    
    shields_response = requests.post(shields_url, json=payload, headers=headers)
    shields_response.raise_for_status()
    print("risk assessment response: ", shields_response.json())

if __name__ == "__main__":
    main()
```

### Span Data

#### Inference

| Value | Location | Content | Test Cases | Handled By | Status | Notes
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working | None |
| Output Tokens | Server | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | working | None |
| Completion Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt Tokens | Client | Integer count | OpenAI, Ollama, vLLM,
streaming, responses | Auto Instrument | Working, no responses | None |
| Prompt | Client | string | Any Inference Provider, responses | Auto
Instrument | Working, no responses | None |

#### Safety

| Value | Location | Content | Testing | Handled By | Status | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [Shield
ID](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Metadata](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Messages](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | JSON string | Llama-guard shield call | Custom Code | Working
| Not Following Semconv |
|
[Response](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |
|
[Status](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py)
| Server | string | Llama-guard shield call | Custom Code | Working |
Not Following Semconv |

#### Remote Tool Listing & Execution

| Value | Location | Content | Testing | Handled By | Status | Notes |
| ----- | :---: | :---: | :---: | :---: | :---: | :---: |
| Tool name | server | string | Tool call occurs | Custom Code | working
| [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server URL | server | string | List tools or execute tool call |
Custom Code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| Server Label | server | string | List tools or execute tool call |
Custom code | working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|
| mcp\_list\_tools\_id | server | string | List tools | Custom code |
working | [Not following
semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span)
|

### Metrics

- Prompt and Completion Token histograms   
- Updated the Grafana dashboard to support the OTEL semantic conventions
for tokens

### Observations

* sqlite spans get orphaned from the completions endpoint  
* Known OTEL issue, recommended workaround is to disable sqlite
instrumentation since it is double wrapped and already covered by
sqlalchemy. This is covered in documentation.

```shell
export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3"
```

* Responses API instrumentation is
[missing](https://github.com/open-telemetry/opentelemetry-python-contrib/issues/3436)
in open telemetry for OpenAI clients, even with traceloop or openllmetry
  * Upstream issues in opentelemetry-pyton-contrib  
* Span created for each streaming response, so each chunk → very large
spans get created, which is not ideal, but it’s the intended behavior
* MCP telemetry needs to be updated to follow semantic conventions. We
can probably use a library for this and handle it in a separate issue.

### Updated Grafana Dashboard

<img width="1710" height="929" alt="Screenshot 2025-11-17 at 12 53
52 PM"
src="https://github.com/user-attachments/assets/6cd941ad-81b7-47a9-8699-fa7113bbe47a"
/>

## Status

 Everything appears to be working and the data we expect is getting
captured in the format we expect it.

## Follow Ups

1. Make tool calling spans follow semconv and capture more data  
   1. Consider using existing tracing library  
2. Make shield spans follow semconv  
3. Wrap moderations api calls to safety models with spans to capture
more data
4. Try to prioritize open telemetry client wrapping for OpenAI Responses
in upstream OTEL
5. This would break the telemetry tests, and they are currently
disabled. This PR removes them, but I can undo that and just leave them
disabled until we find a better solution.
6. Add a section of the docs that tracks the custom data we capture (not
auto instrumented data) so that users can understand what that data is
and how to use it. Commit those changes to the OTEL-gen_ai SIG if
possible as well. Here is an
[example](https://opentelemetry.io/docs/specs/semconv/gen-ai/aws-bedrock/)
of how bedrock handles it.
2025-12-01 10:33:18 -08:00
Derek Higgins
8d01baeb59
test: Update JWKS tests to properly mock authentication (#4257)
PyJWKClient uses urllib.request.urlopen to fetch JWKS keys, not
httpx.AsyncClient.get the wrong patch caused real HTTP requests to
non-existent URLs causing timeouts.

Closes: #4256

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-12-01 09:57:44 -08:00
Ken Dreyer
dc4665af17
feat!: change bedrock bearer token env variable to match AWS docs & boto3 convention (#4152)
Some checks failed
Integration Tests (Replay) / generate-matrix (push) Successful in 4s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 5s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Python Package Build Test / build (3.12) (push) Failing after 6s
Python Package Build Test / build (3.13) (push) Failing after 6s
Test Llama Stack Build / build-single-provider (push) Successful in 50s
Vector IO Integration Tests / test-matrix (push) Failing after 56s
Test Llama Stack Build / build (push) Successful in 49s
UI Tests / ui-tests (22) (push) Successful in 1m1s
Test External API and Providers / test-external (venv) (push) Failing after 1m18s
Unit Tests / unit-tests (3.13) (push) Failing after 1m58s
Unit Tests / unit-tests (3.12) (push) Failing after 2m5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m28s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m20s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m37s
Pre-commit / pre-commit (push) Successful in 3m50s
Rename `AWS_BEDROCK_API_KEY` to `AWS_BEARER_TOKEN_BEDROCK` to align with
the naming convention used in AWS Bedrock documentation and the AWS web
console UI. This reduces confusion when developers compare LLS docs with
AWS docs.

Closes #4147
2025-11-21 09:48:05 -05:00
Ashwin Bharambe
d649c3663e
fix: enforce allowed_models during inference requests (#4197)
The `allowed_models` configuration was only being applied when listing
models via the `/v1/models` endpoint, but the actual inference requests
weren't checking this restriction. This meant users could directly
request any model the provider supports by specifying it in their
inference call, completely bypassing the intended cost controls.

The fix adds validation to all three inference methods (chat
completions, completions, and embeddings) that checks the requested
model against the allowed_models list before making the provider API
call.

### Test plan

Added unit tests
2025-11-19 14:49:44 -08:00
Ian Miller
0757d5a917
feat(responses)!: implement support for OpenAI compatible prompts in Responses API (#3965)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for providing actual implementation of OpenAI
compatible prompts in Responses API. This is the follow up PR with
actual implementation after introducing #3942

The need of this functionality was initiated in #3514.

> Note, https://github.com/llamastack/llama-stack/pull/3514 is divided
on three separate PRs. Current PR is the third of three.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes #3321

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Manual testing, CI workflow with added unit tests

Comprehensive manual testing with new implementation:

**Test Prompts with Images with text on them in Responses API:**

I used this image for testing purposes: [iphone 17
image](https://github.com/user-attachments/assets/9e2ee821-e394-4bbd-b1c8-d48a3fa315de)

1. Upload an image:

```
curl -X POST http://localhost:8321/v1/files \
  -H "Content-Type: multipart/form-data" \
  -F "file=@/Users/ianmiller/iphone.jpeg" \
  -F "purpose=assistants"
```


`{"object":"file","id":"file-d6d375f238e14f21952cc40246bc8504","bytes":556241,"created_at":1761750049,"expires_at":1793286049,"filename":"iphone.jpeg","purpose":"assistants"}%`

2. Create prompt:

```
curl -X POST http://localhost:8321/v1/prompts \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "You are a product analysis expert. Analyze the following product:\n\nProduct Name: {{product_name}}\nDescription: {{description}}\n\nImage: {{product_photo}}\n\nProvide a detailed analysis including quality assessment, target audience, and pricing recommendations.",
    "variables": ["product_name", "description", "product_photo"]
  }'
```

`{"prompt":"You are a product analysis expert. Analyze the following
product:\n\nProduct Name: {{product_name}}\nDescription:
{{description}}\n\nImage: {{product_photo}}\n\nProvide a detailed
analysis including quality assessment, target audience, and pricing
recommendations.","version":1,"prompt_id":"pmpt_7be2208cb82cdbc35356354dae1f335d1e9b7baeca21ea62","variables":["product_name","description","product_photo"],"is_default":false}%`


3. Create response:

```
curl -X POST http://localhost:8321/v1/responses \
  -H "Accept: application/json, text/event-stream" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Please analyze this product",
    "model": "openai/gpt-4o",
    "store": true,
    "prompt": {
      "id": "pmpt_7be2208cb82cdbc35356354dae1f335d1e9b7baeca21ea62",
      "version": "1",
      "variables": {
        "product_name": {
          "type": "input_text",
          "text": "iPhone 17 Pro Max"
        },
         "product_photo": {
          "type": "input_image",
          "file_id": "file-d6d375f238e14f21952cc40246bc8504",
          "detail": "high"
        }
      }
    }
  }'
```


`{"created_at":1761750427,"error":null,"id":"resp_f897f914-e3b8-4783-8223-3ed0d32fcbc6","model":"openai/gpt-4o","object":"response","output":[{"content":[{"text":"###
Product Analysis: iPhone 17 Pro Max\n\n**Quality Assessment:**\n\n-
**Display & Design:**\n - The 6.9-inch display is large, ideal for
streaming and productivity.\n - Anti-reflective technology and 120Hz
refresh rate enhance viewing experience, providing smoother visuals and
reducing glare.\n - Titanium frame suggests a premium build, offering
durability and a sleek appearance.\n\n- **Performance:**\n - The Apple
A19 Pro chip promises significant performance improvements, likely
leading to faster processing and efficient multitasking.\n - 12GB RAM is
substantial for a smartphone, ensuring smooth operation for demanding
apps and games.\n\n- **Camera System:**\n - The triple 48MP camera setup
(wide, ultra-wide, telephoto) is designed for versatile photography
needs, capturing high-resolution photos and videos.\n - The 24MP front
camera will appeal to selfie enthusiasts and content creators needing
quality front-facing shots.\n\n- **Connectivity:**\n - Wi-Fi 7 support
indicates future-proof wireless capabilities, providing faster and more
reliable internet connectivity.\n\n**Target Audience:**\n\n- **Tech
Enthusiasts:** Individuals interested in cutting-edge technology and
performance.\n- **Content Creators:** Users who need a robust camera
system for photo and video production.\n- **Luxury Consumers:** Those
who prefer premium materials and top-of-the-line specs.\n-
**Professionals:** Users who require efficient multitasking and
productivity features.\n\n**Pricing Recommendations:**\n\n- Given the
premium specifications, a higher price point is expected. Consider
pricing competitively within the high-end smartphone market while
justifying cost through unique features like the titanium frame and
advanced connectivity options.\n- Positioning around the $1,200 to
$1,500 range would align with expectations for top-tier devices,
catering to its target audience while ensuring
profitability.\n\nOverall, the iPhone 17 Pro Max showcases a blend of
innovative features and premium design, aimed at users seeking high
performance and superior
aesthetics.","type":"output_text","annotations":[]}],"role":"assistant","type":"message","id":"msg_66f4d844-4d9e-4102-80fc-eb75b34b6dbd","status":"completed"}],"parallel_tool_calls":false,"previous_response_id":null,"prompt":{"id":"pmpt_7be2208cb82cdbc35356354dae1f335d1e9b7baeca21ea62","variables":{"product_name":{"text":"iPhone
17 Pro
Max","type":"input_text"},"product_photo":{"detail":"high","type":"input_image","file_id":"file-d6d375f238e14f21952cc40246bc8504","image_url":null}},"version":"1"},"status":"completed","temperature":null,"text":{"format":{"type":"text"}},"top_p":null,"tools":[],"truncation":null,"usage":{"input_tokens":830,"output_tokens":394,"total_tokens":1224,"input_tokens_details":{"cached_tokens":0},"output_tokens_details":{"reasoning_tokens":0}},"instructions":null}%`

**Test Prompts with PDF files in Responses API:**

I used this PDF file for testing purposes:
[invoicesample.pdf](https://github.com/user-attachments/files/22958943/invoicesample.pdf)

1. Upload PDF:

```
curl -X POST http://localhost:8321/v1/files \
  -H "Content-Type: multipart/form-data" \
  -F "file=@/Users/ianmiller/invoicesample.pdf" \
  -F "purpose=assistants"
```


`{"object":"file","id":"file-7fbb1043a4bb468cab60ffe4b8631d8e","bytes":149568,"created_at":1761750730,"expires_at":1793286730,"filename":"invoicesample.pdf","purpose":"assistants"}%`


2. Create prompt:

```
curl -X POST http://localhost:8321/v1/prompts \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "You are an accounting and financial analysis expert. Analyze the following invoice document:\n\nInvoice Document: {{invoice_doc}}\n\nProvide a comprehensive analysis",
    "variables": ["invoice_doc"]
  }'
```

`{"prompt":"You are an accounting and financial analysis expert. Analyze
the following invoice document:\n\nInvoice Document:
{{invoice_doc}}\n\nProvide a comprehensive
analysis","version":1,"prompt_id":"pmpt_72e2a184a86f32a568b6afb5455dca5c16bf3cc3f80092dc","variables":["invoice_doc"],"is_default":false}%`


3. Create response:

```
curl -X POST http://localhost:8321/v1/responses \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Please provide a detailed analysis of this invoice",
    "model": "openai/gpt-4o",
    "store": true,
    "prompt": {
      "id": "pmpt_72e2a184a86f32a568b6afb5455dca5c16bf3cc3f80092dc",
      "version": "1",
      "variables": {
        "invoice_doc": {
          "type": "input_file",
          "file_id": "file-7fbb1043a4bb468cab60ffe4b8631d8e",
          "filename": "invoicesample.pdf"
        }
      }
    }
  }'
```


`{"created_at":1761750881,"error":null,"id":"resp_da866913-db06-4702-8000-174daed9dbbb","model":"openai/gpt-4o","object":"response","output":[{"content":[{"text":"Here's
a detailed analysis of the invoice provided:\n\n### Seller
Information\n- **Business Name:** The invoice features a logo with
\"Sunny Farm\" indicating the business identity.\n- **Address:** 123
Somewhere St, Melbourne VIC 3000\n- **Contact Information:** Phone
number (03) 1234 5678\n\n### Buyer Information\n- **Name:** Denny
Gunawan\n- **Address:** 221 Queen St, Melbourne VIC 3000\n\n###
Transaction Details\n- **Invoice Number:** #20130304\n- **Date of
Transaction:** Not explicitly mentioned, likely inferred from the
invoice number or needs clarification.\n\n### Items Purchased\n1.
**Apple**\n - Price: $5.00/kg\n - Quantity: 1 kg\n - Subtotal:
$5.00\n\n2. **Orange**\n - Price: $1.99/kg\n - Quantity: 2 kg\n -
Subtotal: $3.98\n\n3. **Watermelon**\n - Price: $1.69/kg\n - Quantity: 3
kg\n - Subtotal: $5.07\n\n4. **Mango**\n - Price: $9.56/kg\n - Quantity:
2 kg\n - Subtotal: $19.12\n\n5. **Peach**\n - Price: $2.99/kg\n -
Quantity: 1 kg\n - Subtotal: $2.99\n\n### Financial Summary\n-
**Subtotal for Items:** $36.00\n- **GST (Goods and Services Tax):** 10%
of $36.00, which amounts to $3.60\n- **Total Amount Due:** $39.60\n\n###
Notes\n- The invoice includes a placeholder text: \"Lorem ipsum dolor
sit amet...\" which is typically used as filler text. This might
indicate a section intended for terms, conditions, or additional notes
that haven’t been completed.\n\n### Visual and Design Elements\n- The
invoice uses a simple and clear layout, featuring the business logo
prominently and stating essential information such as contact and
transaction details in a structured manner.\n- There is a \"Thank You\"
note at the bottom, which adds a professional and courteous
touch.\n\n### Considerations\n- Ensure the date of the transaction is
clear if there are any future references needed.\n- Replace filler text
with relevant terms and conditions or any special instructions
pertaining to the transaction.\n\nThis invoice appears standard,
representing a small business transaction with clearly itemized products
and applicable
taxes.","type":"output_text","annotations":[]}],"role":"assistant","type":"message","id":"msg_39f3b39e-4684-4444-8e4d-e7395f88c9dc","status":"completed"}],"parallel_tool_calls":false,"previous_response_id":null,"prompt":{"id":"pmpt_72e2a184a86f32a568b6afb5455dca5c16bf3cc3f80092dc","variables":{"invoice_doc":{"type":"input_file","file_data":null,"file_id":"file-7fbb1043a4bb468cab60ffe4b8631d8e","file_url":null,"filename":"invoicesample.pdf"}},"version":"1"},"status":"completed","temperature":null,"text":{"format":{"type":"text"}},"top_p":null,"tools":[],"truncation":null,"usage":{"input_tokens":529,"output_tokens":513,"total_tokens":1042,"input_tokens_details":{"cached_tokens":0},"output_tokens_details":{"reasoning_tokens":0}},"instructions":null}%`

**Test simple text Prompt in Responses API:**

1. Create prompt:

```
 curl -X POST http://localhost:8321/v1/prompts \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.",
    "variables": ["name", "company", "role", "tone"]
  }'
```

`{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is
{{role}} at {{company}}. Remember, {{name}}, to be
{{tone}}.","version":1,"prompt_id":"pmpt_f340a3164a4f65d975c774ffe38ea42d15e7ce4a835919ef","variables":["name","company","role","tone"],"is_default":false}%`

2. Create response:

```
curl -X POST http://localhost:8321/v1/responses \
  -H "Accept: application/json, text/event-stream" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "What is the capital of Ireland?",
    "model": "openai/gpt-4o",
    "store": true,
    "prompt": {
      "id": "pmpt_f340a3164a4f65d975c774ffe38ea42d15e7ce4a835919ef",
      "version": "1",
      "variables": {
        "name": {
          "type": "input_text",
          "text": "Alice"
        },
        "company": {
          "type": "input_text",
          "text": "Dummy Company"
        },
        "role": {
          "type": "input_text",
          "text": "Geography expert"
        },
        "tone": {
          "type": "input_text",
          "text": "professional and helpful"
        }
      }
    }
  }'

```


`{"created_at":1761751097,"error":null,"id":"resp_1b037b95-d9ae-4ad0-8e76-d953897ecaef","model":"openai/gpt-4o","object":"response","output":[{"content":[{"text":"The
capital of Ireland is
Dublin.","type":"output_text","annotations":[]}],"role":"assistant","type":"message","id":"msg_8e7c72b6-2aa2-4da6-8e57-da4e12fa3ce2","status":"completed"}],"parallel_tool_calls":false,"previous_response_id":null,"prompt":{"id":"pmpt_f340a3164a4f65d975c774ffe38ea42d15e7ce4a835919ef","variables":{"name":{"text":"Alice","type":"input_text"},"company":{"text":"Dummy
Company","type":"input_text"},"role":{"text":"Geography
expert","type":"input_text"},"tone":{"text":"professional and
helpful","type":"input_text"}},"version":"1"},"status":"completed","temperature":null,"text":{"format":{"type":"text"}},"top_p":null,"tools":[],"truncation":null,"usage":{"input_tokens":47,"output_tokens":7,"total_tokens":54,"input_tokens_details":{"cached_tokens":0},"output_tokens_details":{"reasoning_tokens":0}},"instructions":null}%`
2025-11-19 11:48:11 -08:00
Roy Belio
f18870a221
fix: Pydantic validation error with list-type metadata in vector search (#3797) (#4173)
# Fix for Issue #3797

## Problem
Vector store search failed with Pydantic ValidationError when chunk
metadata contained list-type values.

**Error:**
```
ValidationError: 3 validation errors for VectorStoreSearchResponse
attributes.tags.str: Input should be a valid string
attributes.tags.float: Input should be a valid number
attributes.tags.bool: Input should be a valid boolean
```

**Root Cause:**
- `Chunk.metadata` accepts `dict[str, Any]` (any type allowed)
- `VectorStoreSearchResponse.attributes` requires `dict[str, str | float
| bool]` (primitives only)
- Direct assignment at line 641 caused validation failure for
non-primitive types

## Solution

Added utility function to filter metadata to primitive types before
creating search response.


## Impact

**Fixed:**
- Vector search works with list metadata (e.g., `tags: ["transformers",
"gpu"]`)
- Lists become searchable as comma-separated strings
- No ValidationError on search responses

**Preserved:**
- Full metadata still available in `VectorStoreContent.metadata`
- No API schema changes
- Backward compatible with existing primitive metadata

**Affected:**
All vector store providers using `OpenAIVectorStoreMixin`: FAISS,
Chroma, Qdrant, Milvus, Weaviate, PGVector, SQLite-vec

## Testing


tests/unit/providers/vector_io/test_vector_utils.py::test_sanitize_metadata_for_attributes

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
2025-11-19 10:16:34 -08:00
Anik
4e9633f7c3
feat: Make Safety API an optional dependency for meta-reference agents provider (#4169)
# What does this PR do?

Change Safety API from required to optional dependency, following the
established pattern used for other optional dependencies in Llama Stack.
    
The provider now starts successfully without Safety API configured.
Requests that explicitly include guardrails will receive a clear error
message when Safety API is unavailable.
    
This enables local development and testing without Safety API while
maintaining clear error messages when guardrail features are requested.
    
Closes #4165
    
Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

1. New unit tests added in
`tests/unit/providers/agents/meta_reference/test_safety_optional.py`

2. Integration tests performed with the files in
https://gist.github.com/anik120/c33cef497ec7085e1fe2164e0705b8d6

 (i) test with `test_integration_no_safety_fail.yaml`:
 
Config WITHOUT Safety API, should fail with helpful error since
`required_safety_api` is `true` by default
```
$ uv run llama stack run test_integration_no_safety_fail.yaml 2>&1 | grep -B 5 -A 15 "ValueError.*Safety\|Safety API is 
  required"
File "/Users/anbhatta/go/src/github.com/llamastack/llama-stack/src/llama_stack/providers/inline/agents/meta_reference
  /__init__.py", line 27, in get_provider_impl
      raise ValueError(
      ...<9 lines>...
      )
  ValueError: Safety API is required but not configured.

  To run without safety checks, explicitly set in your configuration:
    providers:
      agents:
        - provider_id: meta-reference
          provider_type: inline::meta-reference
          config:
            require_safety_api: false

  Warning: This disables all safety guardrails for this agents provider.
```

(ii) test with `test_integration_no_safety_works.yaml`

Config WITHOUT Safety API, **but** `require_safety_api=false` is
explicitly set, should succeed

```
$ uv run llama stack run test_integration_no_safety_works.yaml
 INFO     2025-11-16 09:49:10,044 llama_stack.cli.stack.run:169 cli: Using run configuration:                           
   
           /Users/anbhatta/go/src/github.com/llamastack/llama-stack/test_integration_no_safety_works.yaml                
   
  INFO     2025-11-16 09:49:10,052 llama_stack.cli.stack.run:228 cli: HTTPS enabled with certificates:

             Key: None

             Cert: None

  .
  .
  .
  INFO     2025-11-16 09:49:38,528 llama_stack.core.stack:495 core: starting registry refresh task

  INFO     2025-11-16 09:49:38,534 uvicorn.error:62 uncategorized: Application startup complete.

  INFO     2025-11-16 09:49:38,535 uvicorn.error:216 uncategorized: Uvicorn running on http://0.0.0.0:8321 (Press CTRL+C
```


Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>

Signed-off-by: Anik Bhattacharjee <anbhatta@redhat.com>
2025-11-19 10:04:24 -08:00
Charlie Doern
d5cd0eea14
feat!: standardize base_url for inference (#4177)
# What does this PR do?

Completes #3732 by removing runtime URL transformations and requiring
users to provide full URLs in configuration. All providers now use
'base_url' consistently and respect the exact URL provided without
appending paths like /v1 or /openai/v1 at runtime.

BREAKING CHANGE: Users must update configs to include full URL paths
(e.g., http://localhost:11434/v1 instead of http://localhost:11434).

Closes #3732 

## Test Plan

Existing tests should pass even with the URL changes, due to default
URLs being altered.

Add unit test to enforce URL standardization across remote inference
providers (verifies all use 'base_url' field with HttpUrl | None type)

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-19 08:44:28 -08:00
Charlie Doern
91f1b352b4
chore: add storage sane defaults (#4182)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / generate-matrix (push) Successful in 4s
Python Package Build Test / build (3.12) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 14s
Python Package Build Test / build (3.13) (push) Failing after 12s
Test External API and Providers / test-external (venv) (push) Failing after 32s
Vector IO Integration Tests / test-matrix (push) Failing after 1m16s
Unit Tests / unit-tests (3.12) (push) Failing after 1m32s
UI Tests / ui-tests (22) (push) Successful in 1m38s
Unit Tests / unit-tests (3.13) (push) Failing after 1m42s
Pre-commit / pre-commit (push) Successful in 3m4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4m8s
# What does this PR do?

since `StackRunConfig` requires certain parts of `StorageConfig`, it'd
probably make sense to template in some defaults that will "just work"
for most usecases

specifically introduce`ServerStoresConfig` defaults for inference,
metadata, conversations and prompts. We already actually funnel in
defaults for these sections ad-hoc throughout the codebase

additionally set some `backends` defaults for the `StorageConfig`.

This will alleviate some weirdness for `--providers` for run/list-deps
and also some work I have to better align our list-deps/run datatypes

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-18 15:22:26 -08:00
Ashwin Bharambe
bd5ad2963e
refactor(storage): make { kvstore, sqlstore } as llama stack "internal" APIs (#4181)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 6s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test llama stack list-deps / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.13) (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
Python Package Build Test / build (3.12) (push) Failing after 7s
Test llama stack list-deps / show-single-provider (push) Successful in 28s
Test llama stack list-deps / list-deps-from-config (push) Successful in 33s
Test External API and Providers / test-external (venv) (push) Failing after 33s
Vector IO Integration Tests / test-matrix (push) Failing after 43s
Test llama stack list-deps / list-deps (push) Failing after 34s
Test Llama Stack Build / build-single-provider (push) Successful in 46s
Test Llama Stack Build / build (push) Successful in 55s
UI Tests / ui-tests (22) (push) Successful in 1m17s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 1m37s
Unit Tests / unit-tests (3.12) (push) Failing after 1m32s
Unit Tests / unit-tests (3.13) (push) Failing after 2m12s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m21s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m46s
Pre-commit / pre-commit (push) Successful in 3m7s
These primitives (used both by the Stack as well as provider
implementations) can be thought of fruitfully as internal-only APIs
which can themselves have multiple implementations. We use the new
`llama_stack_api.internal` namespace for this.

In addition: the change moves kv/sql store impls, configs, and
dependency helpers under `core/storage`

## Testing

`pytest tests/unit/utils/test_authorized_sqlstore.py`, other existing CI
2025-11-18 13:15:16 -08:00
Sébastien Han
97f535c4f1
feat(openapi): switch to fastapi-based generator (#3944)
Some checks failed
Pre-commit / pre-commit (push) Successful in 3m27s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test llama stack list-deps / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / show-single-provider (push) Successful in 25s
Test External API and Providers / test-external (venv) (push) Failing after 34s
Vector IO Integration Tests / test-matrix (push) Failing after 43s
Test Llama Stack Build / build (push) Successful in 37s
Test Llama Stack Build / build-single-provider (push) Successful in 48s
Test llama stack list-deps / list-deps-from-config (push) Successful in 52s
Test llama stack list-deps / list-deps (push) Failing after 52s
Python Package Build Test / build (3.13) (push) Failing after 1m2s
UI Tests / ui-tests (22) (push) Successful in 1m15s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 1m29s
Unit Tests / unit-tests (3.12) (push) Failing after 1m45s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 1m54s
Unit Tests / unit-tests (3.13) (push) Failing after 2m13s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m20s
# What does this PR do?
This replaces the legacy "pyopenapi + strong_typing" pipeline with a
FastAPI-backed generator that has an explicit schema registry inside
`llama_stack_api`. The key changes:

1. **New generator architecture.** FastAPI now builds the OpenAPI schema
directly from the real routes, while helper modules
(`schema_collection`, `endpoints`, `schema_transforms`, etc.)
post-process the result. The old pyopenapi stack and its strong_typing
helpers are removed entirely, so we no longer rely on fragile AST
analysis or top-level import side effects.

2. **Schema registry in `llama_stack_api`.** `schema_utils.py` keeps a
`SchemaInfo` record for every `@json_schema_type`, `register_schema`,
and dynamically created request model. The OpenAPI generator and other
tooling query this registry instead of scanning the package tree,
producing deterministic names (e.g., `{MethodName}Request`), capturing
all optional/nullable fields, and making schema discovery testable. A
new unit test covers the registry behavior.

3. **Regenerated specs + CI alignment.** All docs/Stainless specs are
regenerated from the new pipeline, so optional/nullable fields now match
reality (expect the API Conformance workflow to report breaking
changes—this PR establishes the new baseline). The workflow itself is
back to the stock oasdiff invocation so future regressions surface
normally.

*Conformance will be RED on this PR; we choose to accept the
deviations.*

## Test Plan
- `uv run pytest tests/unit/server/test_schema_registry.py`
- `uv run python -m scripts.openapi_generator.main docs/static`

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-14 15:53:53 -08:00
Mike Sager
cc88789071
test: Restore responses unit tests (#4153)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test llama stack list-deps / generate-matrix (push) Successful in 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 10s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Python Package Build Test / build (3.12) (push) Failing after 5s
Test llama stack list-deps / list-deps-from-config (push) Successful in 40s
Test Llama Stack Build / build-single-provider (push) Successful in 42s
Test llama stack list-deps / show-single-provider (push) Successful in 43s
Test llama stack list-deps / list-deps (push) Failing after 37s
Test Llama Stack Build / build (push) Successful in 40s
Vector IO Integration Tests / test-matrix (push) Failing after 47s
Test External API and Providers / test-external (venv) (push) Failing after 46s
Python Package Build Test / build (3.13) (push) Failing after 55s
UI Tests / ui-tests (22) (push) Successful in 1m2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1m11s
Unit Tests / unit-tests (3.12) (push) Failing after 1m39s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 1m53s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m1s
Unit Tests / unit-tests (3.13) (push) Failing after 2m12s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m46s
Pre-commit / pre-commit (push) Successful in 3m12s
# What does this PR do?
Restores the responses unit tests that were inadvertently deleted in PR
[#4055 ](https://github.com/llamastack/llama-stack/pull/4055)


## Test Plan
I ran the unit tests that I restored. They all passed with one
exception:


tests/unit/providers/agents/meta_reference/test_openai_responses.py::test_reuse_mcp_tool_list

AttributeError: module 'llama_stack.providers.utils.tools' has no
attribute 'mcp'

It's coming from this line:

    @patch("llama_stack.providers.utils.tools.mcp.list_mcp_tools")

The mcp.py module (and \_\_init\_\_.py) exists under tools. There are
some 'from mcp ....' imports (mcp package in this case) within it that
python may be interpreting as circular imports (or maybe I'm overlooking
something).
2025-11-14 13:16:03 -08:00
Omar Abdelwahab
eb545034ab
fix: MCP authorization parameter implementation (#4052)
# What does this PR do?
Adding a user-facing `authorization ` parameter to MCP tool definitions
that allows users to explicitly configure credentials per MCP server,
addressing GitHub Issue #4034 in a secure manner.


## Test Plan
tests/integration/responses/test_mcp_authentication.py

---------

Co-authored-by: Omar Abdelwahab <omara@fb.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-14 08:54:42 -08:00
Charlie Doern
a078f089d9
fix: rename llama_stack_api dir (#4155)
Some checks failed
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Python Package Build Test / build (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Test llama stack list-deps / generate-matrix (push) Successful in 29s
Test Llama Stack Build / build-single-provider (push) Successful in 33s
Test llama stack list-deps / list-deps-from-config (push) Successful in 32s
UI Tests / ui-tests (22) (push) Successful in 39s
Test Llama Stack Build / build (push) Successful in 39s
Test llama stack list-deps / show-single-provider (push) Successful in 46s
Python Package Build Test / build (3.13) (push) Failing after 44s
Test External API and Providers / test-external (venv) (push) Failing after 44s
Vector IO Integration Tests / test-matrix (push) Failing after 56s
Test llama stack list-deps / list-deps (push) Failing after 47s
Unit Tests / unit-tests (3.12) (push) Failing after 1m42s
Unit Tests / unit-tests (3.13) (push) Failing after 1m55s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m0s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m42s
Pre-commit / pre-commit (push) Successful in 5m17s
# What does this PR do?

the directory structure was src/llama-stack-api/llama_stack_api

instead it should just be src/llama_stack_api to match the other
packages.

update the structure and pyproject/linting config

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-13 15:04:36 -08:00
Francisco Arceo
a82b79ce57
fix: Error out when creating vector store with unknown embedding model (#4154)
# What does this PR do?
Error out when creating vector store with unknown embedding model

Closes https://github.com/llamastack/llama-stack/issues/4047

## Test Plan
Added tests

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-11-13 13:43:31 -08:00
Charlie Doern
840ad75fe9
feat: split API and provider specs into separate llama-stack-api pkg (#3895)
# What does this PR do?

Extract API definitions and provider specifications into a standalone
llama-stack-api package that can be published to PyPI independently of
the main llama-stack server.


see: https://github.com/llamastack/llama-stack/pull/2978 and
https://github.com/llamastack/llama-stack/pull/2978#issuecomment-3145115942

Motivation

External providers currently import from llama-stack, which overrides
the installed version and causes dependency conflicts. This separation
allows external providers to:

- Install only the type definitions they need without server
dependencies
- Avoid version conflicts with the installed llama-stack package
- Be versioned and released independently

This enables us to re-enable external provider module tests that were
previously blocked by these import conflicts.

Changes

- Created llama-stack-api package with minimal dependencies (pydantic,
jsonschema)
- Moved APIs, providers datatypes, strong_typing, and schema_utils
- Updated all imports from llama_stack.* to llama_stack_api.*
- Configured local editable install for development workflow
- Updated linting and type-checking configuration for both packages

Next Steps

- Publish llama-stack-api to PyPI
- Update external provider dependencies
- Re-enable external provider module tests


Pre-cursor PRs to this one:

- #4093 
- #3954 
- #4064 

These PRs moved key pieces _out_ of the Api pkg, limiting the scope of
change here.


relates to #3237 

## Test Plan

Package builds successfully and can be imported independently. All
pre-commit hooks pass with expected exclusions maintained.

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-13 11:51:17 -08:00
Derek Higgins
aeaf4eb3dd
fix: remove_disabled_providers filtering models with None fields (#4132)
Fixed bug where models with No provider_model_id were incorrectly
filtered from the startup config display. The function was checking
multiple fields when it should only filter items with explicitly
disabled provider_id.

Changes:
o Modified remove_disabled_providers to only check provider_id field o
Changed condition from checking multiple fields with None to only
  checking provider_id for "__disabled__", None or empty string
o Added comprehensive unit tests

Closes: #4131

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-11-13 07:24:05 -08:00
Ashwin Bharambe
fcf649b97a
feat(storage): share sql/kv instances and add upsert support (#4140)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / generate-matrix (push) Successful in 2s
Python Package Build Test / build (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Python Package Build Test / build (3.13) (push) Failing after 17s
Test Llama Stack Build / build-single-provider (push) Successful in 31s
Test External API and Providers / test-external (venv) (push) Failing after 32s
Vector IO Integration Tests / test-matrix (push) Failing after 45s
Test Llama Stack Build / build (push) Successful in 47s
UI Tests / ui-tests (22) (push) Successful in 1m42s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m8s
Unit Tests / unit-tests (3.13) (push) Failing after 2m7s
Unit Tests / unit-tests (3.12) (push) Failing after 2m28s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m32s
Pre-commit / pre-commit (push) Successful in 3m20s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3m33s
A few changes to the storage layer to ensure we reduce unnecessary
contention arising out of our design choices (and letting the database
layer do its correct thing):

- SQL stores now share a single `SqlAlchemySqlStoreImpl` per backend,
and `kvstore_impl` caches instances per `(backend, namespace)`. This
avoids spawning multiple SQLite connections for the same file, reducing
lock contention and aligning the cache story for all backends.

- Added an async upsert API (with SQLite/Postgres dialect inserts) and
routed it through `AuthorizedSqlStore`, then switched conversations and
responses to call it. Using native `ON CONFLICT DO UPDATE` eliminates
the insert-then-update retry window that previously caused long WAL lock
retries.

### Test Plan

Existing tests, added a unit test for `upsert()`
2025-11-12 12:14:26 -08:00
Francisco Arceo
eb3f9ac278
feat: allow returning embeddings and metadata from /vector_stores/ methods; disallow changing Provider ID (#4046)
# What does this PR do?

- Updates `/vector_stores/{vector_store_id}/files/{file_id}/content` to
allow returning `embeddings` and `metadata` using the `extra_query`
    -  Updates the UI accordingly to display them.

- Update UI to support CRUD operations in the Vector Stores section and
adds a new modal exposing the functionality.

- Updates Vector Store update to fail if a user tries to update Provider
ID (which doesn't make sense to allow)

```python
In  [1]: client.vector_stores.files.content(
    vector_store_id=vector_store.id, 
    file_id=file.id, 
    extra_query={"include_embeddings": True, "include_metadata": True}
)
Out [1]: FileContentResponse(attributes={}, content=[Content(text='This is a test document to check if embeddings are generated properly.\n', type='text', embedding=[0.33760684728622437, ...,], chunk_metadata={'chunk_id': '62a63ae0-c202-f060-1b86-0a688995b8d3', 'document_id': 'file-27291dbc679642ac94ffac6d2810c339', 'source': None, 'created_timestamp': 1762053437, 'updated_timestamp': 1762053437, 'chunk_window': '0-13', 'chunk_tokenizer': 'DEFAULT_TIKTOKEN_TOKENIZER', 'chunk_embedding_model': 'sentence-transformers/nomic
-ai/nomic-embed-text-v1.5', 'chunk_embedding_dimension': 768, 'content_token_count': 13, 'metadata_token_count': 9}, metadata={'filename': 'test-embedding.txt', 'chunk_id': '62a63ae0-c202-f060-1b86-0a688995b8d3', 'document_id': 'file-27291dbc679642ac94ffac6d2810c339', 'token_count': 13, 'metadata_token_count': 9})], file_id='file-27291dbc679642ac94ffac6d2810c339', filename='test-embedding.txt')
```

Screenshots of UI are displayed below:

### List Vector Store with Added "Create New Vector Store"
<img width="1912" height="491" alt="Screenshot 2025-11-06 at 10 47
25 PM"
src="https://github.com/user-attachments/assets/a3a3ddd9-758d-4005-ac9c-5047f03916f3"
/>

### Create New Vector Store
<img width="1918" height="1048" alt="Screenshot 2025-11-06 at 10 47
49 PM"
src="https://github.com/user-attachments/assets/b4dc0d31-696f-4e68-b109-27915090f158"
/>

### Edit Vector Store
<img width="1916" height="1355" alt="Screenshot 2025-11-06 at 10 48
32 PM"
src="https://github.com/user-attachments/assets/ec879c63-4cf7-489f-bb1e-57ccc7931414"
/>


### Vector Store Files Contents page (with Embeddings)
<img width="1914" height="849" alt="Screenshot 2025-11-06 at 11 54
32 PM"
src="https://github.com/user-attachments/assets/3095520d-0e90-41f7-83bd-652f6c3fbf27"
/>

### Vector Store Files Contents Details page (with Embeddings)
<img width="1916" height="1221" alt="Screenshot 2025-11-06 at 11 55
00 PM"
src="https://github.com/user-attachments/assets/e71dbdc5-5b49-472b-a43a-5785f58d196c"
/>

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
Tests added for Middleware extension and Provider failures.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-11-12 09:59:48 -08:00
Charlie Doern
43adc23ef6
refactor: remove dead inference API code and clean up imports (#4093)
# What does this PR do?

Delete ~2,000 lines of dead code from the old bespoke inference API that
was replaced by OpenAI-only API. This includes removing unused type
conversion functions, dead provider methods, and event_logger.py.

Clean up imports across the codebase to remove references to deleted
types. This eliminates unnecessary
code and dependencies, helping isolate the API package as a
self-contained module.

This is the last interdependency between the .api package and "exterior"
packages, meaning that now every other package in llama stack imports
the API, not the other way around.

## Test Plan

this is a structural change, no tests needed.

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-10 15:29:24 -08:00
Juan Pérez de Algaba
6147321083
fix: Vector store persistence across server restarts (#3977)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 17s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 21s
Integration Tests (Replay) / generate-matrix (push) Successful in 21s
Unit Tests / unit-tests (3.12) (push) Failing after 18s
Pre-commit / pre-commit (push) Failing after 23s
Test External API and Providers / test-external (venv) (push) Failing after 22s
API Conformance Tests / check-schema-compatibility (push) Successful in 30s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 20s
UI Tests / ui-tests (22) (push) Successful in 1m10s
# What does this PR do?

This PR fixes a bug in LlamaStack 0.3.0 where vector stores created via
the OpenAI-compatible API (`POST /v1/vector_stores`) would fail with
`VectorStoreNotFoundError` after server restart when attempting
operations like `vector_io.insert()` or `vector_io.query()`.

The bug affected **6 vector IO providers**: `pgvector`, `sqlite_vec`,
`chroma`, `milvus`, `qdrant`, and `weaviate`.

Created with the assistance of: claude-4.5-sonnet

## Root Cause

All affected providers had a broken
`_get_and_cache_vector_store_index()` method that:
1. Did not load existing vector stores from persistent storage during
initialization
2. Attempted to use `vector_store_table` (which was either `None` or a
`KVStore` without the required `get_vector_store()` method)
3. Could not reload vector stores after server restart or cache miss

## Solution

This PR implements a consistent pattern across all 6 providers:

1. **Load vector stores during initialization** - Pre-populate the cache
from KV store on startup
2. **Fix lazy loading** - Modified `_get_and_cache_vector_store_index()`
to load directly from KV store instead of relying on
`vector_store_table`
3. **Remove broken dependency** - Eliminated reliance on the
`vector_store_table` pattern

## Testing steps

### 1.1 Configure the stack

Create or use an existing configuration with a vector IO provider.

**Example `run.yaml`:**

```yaml
vector_io_store:
  - provider_id: pgvector
    provider_type: remote::pgvector
    config:
      host: localhost
      port: 5432
      db: llamastack
      user: llamastack
      password: llamastack

inference:
  - provider_id: sentence-transformers
    provider_type: inline::sentence-transformers
    config:
      model: sentence-transformers/all-MiniLM-L6-v2
```

### 1.2 Start the server

```bash
llama stack run run.yaml --port 5000
```

Wait for the server to fully start. You should see:

```
INFO: Started server process
INFO: Application startup complete
```

---

## Step 2: Create a Vector Store

### 2.1 Create via API

```bash
curl -X POST http://localhost:5000/v1/vector_stores \
  -H "Content-Type: application/json" \
  -d '{
    "name": "test-persistence-store",
    "extra_body": {
      "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
      "embedding_dimension": 384,
      "provider_id": "pgvector"
    }
  }' | jq
```

### 2.2 Expected Response

```json
{
  "id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
  "object": "vector_store",
  "name": "test-persistence-store",
  "status": "completed",
  "created_at": 1730304000,
  "file_counts": {
    "total": 0,
    "completed": 0,
    "in_progress": 0,
    "failed": 0,
    "cancelled": 0
  },
  "usage_bytes": 0
}
```

**Save the `id` field** (e.g.,
`vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d`) — you’ll need it for the next
steps.

---

## Step 3: Insert Data (Before Restart)

### 3.1 Insert chunks into the vector store

```bash
export VS_ID="vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d"

curl -X POST http://localhost:5000/vector-io/insert \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"chunks\": [
      {
        \"content\": \"Python is a high-level programming language known for its readability.\",
        \"metadata\": {\"source\": \"doc1\", \"page\": 1}
      },
      {
        \"content\": \"Machine learning enables computers to learn from data without explicit programming.\",
        \"metadata\": {\"source\": \"doc2\", \"page\": 1}
      },
      {
        \"content\": \"Neural networks are inspired by biological neurons in the brain.\",
        \"metadata\": {\"source\": \"doc3\", \"page\": 1}
      }
    ]
  }"
```

### 3.2 Expected Response

Status: **200 OK**  
Response: *Empty or success confirmation*

---

## Step 4: Query Data (Before Restart – Baseline)

### 4.1 Query the vector store

```bash
curl -X POST http://localhost:5000/vector-io/query \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"query\": \"What is machine learning?\"
  }" | jq
```

### 4.2 Expected Response

```json
{
  "chunks": [
    {
      "content": "Machine learning enables computers to learn from data without explicit programming.",
      "metadata": {"source": "doc2", "page": 1}
    },
    {
      "content": "Neural networks are inspired by biological neurons in the brain.",
      "metadata": {"source": "doc3", "page": 1}
    }
  ],
  "scores": [0.85, 0.72]
}
```

**Checkpoint:** Works correctly before restart.

---

## Step 5: Restart the Server (Critical Test)

### 5.1 Stop the server

In the terminal where it’s running:

```
Ctrl + C
```

Wait for:

```
Shutting down...
```

### 5.2 Restart the server

```bash
llama stack run run.yaml --port 5000
```

Wait for:

```
INFO: Started server process
INFO: Application startup complete
```

The vector store cache is now empty, but data should persist.

---

## Step 6: Verify Vector Store Exists (After Restart)

### 6.1 List vector stores

```bash
curl http://localhost:5000/v1/vector_stores | jq
```

### 6.2 Expected Response

```json
{
  "object": "list",
  "data": [
    {
      "id": "vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d",
      "name": "test-persistence-store",
      "status": "completed"
    }
  ]
}
```

**Checkpoint:** Vector store should be listed.

---

## Step 7: Insert Data (After Restart – THE BUG TEST)

### 7.1 Insert new chunks

```bash
curl -X POST http://localhost:5000/vector-io/insert \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"chunks\": [
      {
        \"content\": \"This chunk was inserted AFTER the server restart.\",
        \"metadata\": {\"source\": \"post-restart\", \"test\": true}
      }
    ]
  }"
```

### 7.2 Expected Results

**With Fix (Correct):**
```
Status: 200 OK
Response: Success
```

 **Without Fix (Bug):**
```json
{
  "detail": "VectorStoreNotFoundError: Vector Store 'vs_a1b2c3d4-e5f6-4a7b-8c9d-0e1f2a3b4c5d' not found."
}
```

 **Critical Test:** If insertion succeeds, the fix works.

---

## Step 8: Query Data (After Restart – Verification)

### 8.1 Query all data

```bash
curl -X POST http://localhost:5000/vector-io/query \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"query\": \"restart\"
  }" | jq
```

### 8.2 Expected Response

```json
{
  "chunks": [
    {
      "content": "This chunk was inserted AFTER the server restart.",
      "metadata": {"source": "post-restart", "test": true}
    }
  ],
  "scores": [0.95]
}
```

**Checkpoint:** Both old and new data are queryable.

---

## Step 9: Multiple Restart Test (Extra Verification)

### 9.1 Restart again

```bash
Ctrl + C
llama stack run run.yaml --port 5000
```

### 9.2 Query after restart

```bash
curl -X POST http://localhost:5000/vector-io/query \
  -H "Content-Type: application/json" \
  -d "{
    \"vector_store_id\": \"$VS_ID\",
    \"query\": \"programming\"
  }" | jq
```

**Expected:** Works correctly across multiple restarts.

---------

Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
2025-11-09 00:05:00 -05:00
Sumanth Kamenani
e894e36eea
feat: add OpenAI-compatible Bedrock provider (#3748)
Some checks failed
Pre-commit / pre-commit (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / list-deps-from-config (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test llama stack list-deps / list-deps (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 9s
UI Tests / ui-tests (22) (push) Successful in 48s
Implements AWS Bedrock inference provider using OpenAI-compatible
endpoint for Llama models available through Bedrock.

Closes: #3410


## What does this PR do?

Adds AWS Bedrock as an inference provider using the OpenAI-compatible
endpoint. This lets us use Bedrock models (GPT-OSS, Llama) through the
standard llama-stack inference API.

The implementation uses LiteLLM's OpenAI client under the hood, so it
gets all the OpenAI compatibility features. The provider handles
per-request API key overrides via headers.

## Test Plan

**Tested the following scenarios:**
- Non-streaming completion - basic request/response flow
- Streaming completion - SSE streaming with chunked responses
- Multi-turn conversations - context retention across turns
- Tool calling - function calling with proper tool_calls format

# Bedrock OpenAI-Compatible Provider - Test Results


**Model:** `bedrock-inference/openai.gpt-oss-20b-1:0`


---

## Test 1: Model Listing

**Request:**
```http
GET /v1/models HTTP/1.1
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: application/json

{
  "data": [
    {"identifier": "bedrock-inference/openai.gpt-oss-20b-1:0", ...},
    {"identifier": "bedrock-inference/openai.gpt-oss-40b-1:0", ...}
  ]
}
```

---

## Test 2: Non-Streaming Completion

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "bedrock-inference/openai.gpt-oss-20b-1:0",
  "messages": [{"role": "user", "content": "Say 'Hello from Bedrock' and nothing else"}],
  "stream": false
}
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: application/json

{
  "choices": [{
    "finish_reason": "stop",
    "message": {"content": "...Hello from Bedrock"}
  }],
  "usage": {"prompt_tokens": 79, "completion_tokens": 50, "total_tokens": 129}
}
```

---

## Test 3: Streaming Completion

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "bedrock-inference/openai.gpt-oss-20b-1:0",
  "messages": [{"role": "user", "content": "Count from 1 to 5"}],
  "stream": true
}
```

**Response:**
```http
HTTP/1.1 200 OK
Content-Type: text/event-stream

[6 SSE chunks received]
Final content: "1, 2, 3, 4, 5"
```

---

## Test 4: Error Handling - Invalid Model

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
Content-Type: application/json

{
  "model": "invalid-model-id",
  "messages": [{"role": "user", "content": "Hello"}],
  "stream": false
}
```

**Response:**
```http
HTTP/1.1 404 Not Found
Content-Type: application/json

{
  "detail": "Model 'invalid-model-id' not found. Use 'client.models.list()' to list available Models."
}
```

---

## Test 5: Multi-Turn Conversation

**Request 1:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "My name is Alice"}]
}
```

**Response 1:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Nice to meet you, Alice! How can I help you today?"}
  }]
}
```

**Request 2 (with history):**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [
    {"role": "user", "content": "My name is Alice"},
    {"role": "assistant", "content": "...Nice to meet you, Alice!..."},
    {"role": "user", "content": "What is my name?"}
  ]
}
```

**Response 2:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Your name is Alice."}
  }],
  "usage": {"prompt_tokens": 183, "completion_tokens": 42}
}
```

**Context retained across turns**

---

## Test 6: System Messages

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [
    {"role": "system", "content": "You are Shakespeare. Respond only in Shakespearean English."},
    {"role": "user", "content": "Tell me about the weather"}
  ]
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "Lo! I heed thy request..."}
  }],
  "usage": {"completion_tokens": 813}
}
```


---

## Test 7: Tool Calling

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "What's the weather in San Francisco?"}],
  "tools": [{
    "type": "function",
    "function": {
      "name": "get_weather",
      "parameters": {"type": "object", "properties": {"location": {"type": "string"}}}
    }
  }]
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "finish_reason": "tool_calls",
    "message": {
      "tool_calls": [{
        "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"}
      }]
    }
  }]
}
```

---

## Test 8: Sampling Parameters

**Request:**
```http
POST /v1/chat/completions HTTP/1.1

{
  "messages": [{"role": "user", "content": "Say hello"}],
  "temperature": 0.7,
  "top_p": 0.9
}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Hello! 👋 How can I help you today?"}
  }]
}
```

---

## Test 9: Authentication Error Handling

### Subtest A: Invalid API Key

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": "invalid-fake-key-12345"}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 400 Bad Request

{
  "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}"
}
```

---

### Subtest B: Empty API Key (Fallback to Config)

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": ""}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 200 OK

{
  "choices": [{
    "message": {"content": "...Hello! How can I assist you today?"}
  }]
}
```

 **Fell back to config key**

---

### Subtest C: Malformed Token

**Request:**
```http
POST /v1/chat/completions HTTP/1.1
x-llamastack-provider-data: {"aws_bedrock_api_key": "not-a-valid-bedrock-token-format"}

{"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}
```

**Response:**
```http
HTTP/1.1 400 Bad Request

{
  "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}"
}
```
2025-11-06 17:18:18 -08:00
Roy Belio
2619f3552e
fix: show built-in distributions in llama stack list (#4040)
# What does this PR do?
Fixes issue #3922 where `llama stack list` only showed distributions
after they were run. This PR makes the command show all available
distributions immediately on a fresh install.

Closes #3922

## Changes
- **Updated `_get_distribution_dirs()`** to discover both built-in and
built distributions:
- Built-in distributions from `src/llama_stack/distributions/` (e.g.,
starter, nvidia, dell)
  - Built distributions from `~/.llama/distributions`
- **Added a "Source" column** to distinguish between "built-in" and
"built" distributions
- **Built distributions override built-in ones** with the same name
(expected behavior)
- **Updated config file detection logic** to handle both naming
conventions:
  - Built-in: `build.yaml` and `run.yaml`
  - Built: `{name}-build.yaml` and `{name}-run.yaml`

## Test Plan
### Unit Tests
Added comprehensive unit tests in
`tests/unit/distribution/test_stack_list.py`:
```bash
uv run pytest tests/unit/distribution/test_stack_list.py -v
```
**Result**:  All 8 tests pass
- `test_builtin_distros_shown_without_running` - Verifies the core fix
for issue #3922
- `test_builtin_and_built_distros_shown_together` - Ensures both types
are shown
- `test_built_distribution_overrides_builtin` - Tests override behavior
- `test_empty_distributions` - Edge case handling
- `test_config_files_detection_builtin` - Config file detection for
built-in distros
- `test_config_files_detection_built` - Config file detection for built
distros
- `test_llamastack_prefix_stripped` - Name normalization
- `test_hidden_directories_ignored` - Filters hidden directories

### Manual Testing
**Before the fix** (simulated with empty `~/.llama/distributions`):
```bash
$ llama stack list
No stacks found in ~/.llama/distributions
```

**After the fix**:
```bash
$ llama stack list
┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Stack Name        ┃ Source   ┃ Path              ┃ Build Config ┃ Run Config ┃
┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ ci-tests          │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ dell              │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ meta-reference-g… │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ nvidia            │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ open-benchmark    │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ postgres-demo     │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ starter           │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ starter-gpu       │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
│ watsonx           │ built-in │ /path/to/src/...  │ Yes          │ Yes        │
└───────────────────┴──────────┴───────────────────┴──────────────┴────────────┘
```

**After running a distribution**:
```bash
$ llama stack run starter  # Creates ~/.llama/distributions/starter
$ llama stack list
┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Stack Name        ┃ Source   ┃ Path              ┃ Build Config ┃ Run Config ┃
┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ ...               │ built-in │ ...               │ Yes          │ Yes        │
│ starter           │ built    │ ~/.llama/distri…  │ No           │ No         │
│ ...               │ built-in │ ...               │ Yes          │ Yes        │
└───────────────────┴──────────┴───────────────────┴──────────────┴────────────┘
```
Note how `starter` now shows as "built" and points to
`~/.llama/distributions`, overriding the built-in version.

## Breaking Changes
**No breaking changes** - This is a bug fix that improves user
experience with minimal risk:
- No programmatic parsing of output found in the codebase
- Table format is clearly for human consumption
- The new "Source" column helps users understand where distributions
come from
- The behavior change is exactly what users expect (seeing all available
distributions)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-11-05 10:16:28 -08:00
Sébastien Han
fd1603beef
chore: remove unused classes (#4077)
# What does this PR do?

These were maybe be included in the webmethod?
The unit test was pointless too since the request was never used
anywhere?

This shouldn't be in the API definition, if we never consume it.

## Test Plan

CI with pre-commit on OpenAPI spec generation.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-11-05 16:45:23 +01:00
Ashwin Bharambe
a8a8aa56c0
chore!: remove the agents (sessions and turns) API (#4055)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Pre-commit / pre-commit (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
UI Tests / ui-tests (22) (push) Successful in 1m10s
- Removes the deprecated agents (sessions and turns) API that was marked
alpha in 0.3.0
- Cleans up unused imports and orphaned types after the API removal
- Removes `SessionNotFoundError` and `AgentTurnInputType` which are no
longer needed

The agents API is completely superseded by the Responses + Conversations
APIs, and the client SDK Agent class already uses those implementations.

Corresponding client-side PR:
https://github.com/llamastack/llama-stack-client-python/pull/295
2025-11-04 09:38:39 -08:00
Mustafa Elbehery
a6ddbae0ed
chore(test): migrate unit tests from unittest to pytest nvidia test eval (#3249)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Pre-commit / pre-commit (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
API Conformance Tests / check-schema-compatibility (push) Successful in 14s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
UI Tests / ui-tests (22) (push) Successful in 1m16s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR migrates `unittest` to `pytest` in
`tests/unit/providers/nvidia/test_eval.py`.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Part of https://github.com/llamastack/llama-stack/issues/2680

Supersedes https://github.com/llamastack/llama-stack/pull/2791

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-11-04 10:29:07 +01:00
Ashwin Bharambe
44096512b5
feat: add custom_metadata to OpenAIModel to unify /v1/models with /v1/openai/v1/models (#4051)
We need to remove `/v1/openai/v1` paths shortly. There is one trouble --
our current `/v1/openai/v1/models` endpoint provides different data than
`/v1/models`. Unfortunately our tests target the latter (llama-stack
customized) behavior. We need to get to true OpenAI compatibility.

This is step 1: adding `custom_metadata` field to `OpenAIModel` that
includes all the extra stuff we add in the native `/v1/models` response.
This can be extracted on the consumer end by look at
`__pydantic_extra__` or other similar fields.

This PR:
- Adds `custom_metadata` field to `OpenAIModel` class in
`src/llama_stack/apis/models/models.py`
- Modified `openai_list_models()` in
`src/llama_stack/core/routing_tables/models.py` to populate
custom_metadata

Next Steps
1. Update stainless client to use `/v1/openai/v1/models` instead of
`/v1/models`
2. Migrate tests to read from `custom_metadata`
3. Remove `/v1/openai/v1/` prefix entirely and consolidate to single
`/v1/models` endpoint
2025-11-03 15:56:07 -08:00
Matthew Farrellee
1263448de2
fix: allowed_models config did not filter models (#4030)
# What does this PR do?

closes #4022 

## Test Plan

ci w/ new tests

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-03 11:43:39 -08:00
Charlie Doern
30f8921240
fix: generate provider config when using --providers (#4044)
# What does this PR do?

call the sample_run_config method for providers that have it when
generating a run config using `llama stack run --providers`. This will
propagate API keys

resolves #4032


## Test Plan

new unit test checks the output of using `--providers` to ensure
`api_key` is in the config.

manual testing:

```
╰─ llama stack list-deps --providers=inference=remote::openai --format uv | sh
Using Python 3.12.11 environment at: venv
Audited 7 packages in 8ms

╰─ llama stack run --providers=inference=remote::openai
INFO     2025-11-03 14:33:02,094 llama_stack.cli.stack.run:161 cli: Writing generated config to:
         /Users/charliedoern/.llama/distributions/providers-run/run.yaml
INFO     2025-11-03 14:33:02,096 llama_stack.cli.stack.run:169 cli: Using run configuration:
         /Users/charliedoern/.llama/distributions/providers-run/run.yaml
INFO     2025-11-03 14:33:02,099 llama_stack.cli.stack.run:228 cli: HTTPS enabled with certificates:
           Key: None
           Cert: None
INFO     2025-11-03 14:33:02,099 llama_stack.cli.stack.run:230 cli: Listening on 0.0.0.0:8321
INFO     2025-11-03 14:33:02,145 llama_stack.core.server.server:513 core::server: Run configuration:
INFO     2025-11-03 14:33:02,146 llama_stack.core.server.server:516 core::server: apis:
         - inference
         image_name: providers-run
         providers:
           inference:
           - config:
               api_key: '********'
               base_url: https://api.openai.com/v1
             provider_id: openai
             provider_type: remote::openai
         registered_resources:
           benchmarks: []
           datasets: []
           models: []
           scoring_fns: []
           shields: []
           tool_groups: []
           vector_stores: []
         server:
           port: 8321
           workers: 1
         storage:
           backends:
             kv_default:
               db_path: /Users/charliedoern/.llama/distributions/providers-run/kvstore.db
               type: kv_sqlite
             sql_default:
               db_path: /Users/charliedoern/.llama/distributions/providers-run/sql_store.db
               type: sql_sqlite
           stores:
             conversations:
               backend: sql_default
               table_name: openai_conversations
             inference:
               backend: sql_default
               max_write_queue_size: 10000
               num_writers: 4
               table_name: inference_store
             metadata:
               backend: kv_default
               namespace: registry
             prompts:
               backend: kv_default
               namespace: prompts
         telemetry:
           enabled: false
         version: 2

INFO     2025-11-03 14:33:02,299 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue
         disabled for SQLite to avoid concurrency issues
INFO     2025-11-03 14:33:05,272 llama_stack.providers.utils.inference.openai_mixin:439 providers::utils:
         OpenAIInferenceAdapter.list_provider_model_ids() returned 105 models
INFO     2025-11-03 14:33:05,368 uvicorn.error:84 uncategorized: Started server process [69109]
INFO     2025-11-03 14:33:05,369 uvicorn.error:48 uncategorized: Waiting for application startup.
INFO     2025-11-03 14:33:05,370 llama_stack.core.server.server:172 core::server: Starting up Llama Stack server
         (version: 0.3.0)
INFO     2025-11-03 14:33:05,370 llama_stack.core.stack:495 core: starting registry refresh task
INFO     2025-11-03 14:33:05,370 uvicorn.error:62 uncategorized: Application startup complete.
INFO     2025-11-03 14:33:05,371 uvicorn.error:216 uncategorized: Uvicorn running on http://0.0.0.0:8321 (Press CTRL+C
         to quit)
INFO     2025-11-03 14:34:19,242 uvicorn.access:473 uncategorized: 127.0.0.1:63102 - "POST /v1/chat/completions
         HTTP/1.1" 200
```

client:

```
curl http://localhost:8321/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
 "model": "openai/gpt-5",
 "messages": [
     {"role": "user", "content": "What is 1 + 2"}
 ]
}'
{"id":"...","choices":[{"finish_reason":"stop","index":0,"logprobs":null,"message":{"content":"3","refusal":null,"role":"assistant","annotations":[],"audio":null,"function_call":null,"tool_calls":null}}],"created":1762198455,"model":"openai/gpt-5","object":"chat.completion","service_tier":"default","system_fingerprint":null,"usage":{"completion_tokens":10,"prompt_tokens":13,"total_tokens":23,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0}}}%
```

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-03 11:37:58 -08:00
Charlie Doern
93401836b7
feat: llama stack run --providers (#3989)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 3s
Pre-commit / pre-commit (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 6s
Test Llama Stack Build / build (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 56s
# What does this PR do?

llama stack run --providers takes a list of providers in the format of
api1=provider1,api2=provider2

this allows users to run with a simple list of providers.

given the architecture of `create_app`, this run config needs to be
written to disk. use ~/.llama/distribution/providers-run/run.yaml each
time for consistency

resolves #3956

## Test Plan

new unit tests to ensure --providers.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-10-31 16:21:32 -07:00
Jiayi Ni
fa7699d2c3
feat: Add rerank API for NVIDIA Inference Provider (#3329)
# What does this PR do?
Add rerank API for NVIDIA Inference Provider.

<!-- If resolving an issue, uncomment and update the line below -->
Closes #3278 

## Test Plan
Unit test:
```
pytest tests/unit/providers/nvidia/test_rerank_inference.py
```

Integration test: 
```
pytest -s -v tests/integration/inference/test_rerank.py   --stack-config="inference=nvidia"   --rerank-model=nvidia/nvidia/nv-rerankqa-mistral-4b-v3   --env NVIDIA_API_KEY=""   --env NVIDIA_BASE_URL="https://integrate.api.nvidia.com"
```
2025-10-30 21:42:09 -07:00
Doug Edgar
e8cd8508b5
fix: handle missing external_providers_dir (#3974)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 3s
Python Package Build Test / build (3.13) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Pre-commit / pre-commit (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
UI Tests / ui-tests (22) (push) Successful in 50s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR fixes the handling of the external_providers_dir configuration
field to align with its ongoing deprecation, in favor of the provider
`module` specification approach.

It addresses the issue in #3950, where using the default provided
run.yaml config resulted in the `external_providers_dir` parameter being
set to the literal string `None`, and crashing the llama-stack server
when starting.

<!-- If resolving an issue, uncomment and update the line below -->
Closes #3950 

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

- Built a new container image from `podman build . -f
containers/Containerfile --build-arg DISTRO_NAME=starter --tag
llama-stack:starter`
- Tested it locally with `podman run -it localhost/llama-stack:starter`
- Tested it on an OpenShift 4.19 cluster, deployed via the
llama-stack-k8s-operator.

Signed-off-by: Doug Edgar <dedgar@redhat.com>
2025-10-30 17:01:31 -07:00
Charlie Doern
e8ecc99524
fix!: remove chunk_id property from Chunk class (#3954)
# What does this PR do?

chunk_id in the Chunk class executes actual logic to compute a chunk ID.
This sort of logic should not live in the API spec.

Instead, the providers should be in charge of calling generate_chunk_id,
and pass it to `Chunk`.

this removes the incorrect dependency between Provider impl and API impl

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-10-29 18:59:59 -07:00
Ashwin Bharambe
c9d4b6c54f
chore(mypy): part-04 resolve mypy errors in meta_reference agents (#3969)
## Summary
Fixes all mypy type errors in `providers/inline/agents/meta_reference/`
and removes exclusions from pyproject.toml.

## Changes
- Fix type annotations for Safety API message parameters
(OpenAIMessageParam)
- Add Action enum usage in access control checks
- Correct method signatures to match API supertype (parameter ordering)
- Handle optional return types with proper None checks
- Remove 3 meta_reference exclusions from mypy config

**Files fixed:** 25 errors across 3 files (safety.py, persistence.py,
agents.py)
2025-10-29 13:37:28 -07:00
Ashwin Bharambe
4e6c769cc4
fix(context): prevent provider data leak between streaming requests (#3924)
## Summary

- `preserve_contexts_async_generator` left `PROVIDER_DATA_VAR` (and
other context vars) populated after a streaming generator completed on
HEAD~1, so the asyncio context for request N+1 started with request N's
provider payload.
- FastAPI dependencies and middleware execute before
`request_provider_data_context` rebinds the header data, meaning
auth/logging hooks could observe a prior tenant's credentials or treat
them as authenticated. Traces and any background work that inspects the
context outside the `with` block leak as well—this is a real security
regression, not just a CLI artifact.
- The wrapper now restores each tracked `ContextVar` to the value it
held before the iteration (falling back to clearing when necessary)
after every yield and when the generator terminates, so provider data is
wiped while callers that set their own defaults keep them.

## Test Plan

- `uv run pytest tests/unit/core/test_provider_data_context.py -q`
- `uv run pytest tests/unit/distribution/test_context.py -q`

Both suites fail on HEAD~1 and pass with this change.
2025-10-27 23:01:12 -07:00
ehhuang
b7dd3f5c56
chore!: BREAKING CHANGE: vector_db_id -> vector_store_id (#3923)
# What does this PR do?


## Test Plan
CI
vector_io tests will fail until next client sync

passed with
https://github.com/llamastack/llama-stack-client-python/pull/286 checked
out locally
2025-10-27 14:26:06 -07:00
Matthew Farrellee
a9b00db421
feat: add provider data keys for Cerebras, Databricks, NVIDIA, and RunPod (#3734)
# What does this PR do?

add provider-data key passing support to Cerebras, Databricks, NVIDIA
and RunPod

also, added missing tests for Fireworks, Anthropic, Gemini, SambaNova,
and vLLM

addresses #3517 

## Test Plan

ci w/ new tests

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-27 13:09:35 -07:00
IAN MILLER
98a5047f9d
feat(prompts): attach prompts to storage stores in run configs (#3893)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for attaching prompts to storage stores in run
configs. It allows to specify prompts as stores in different
distributions. The need of this functionality was initiated in #3514

> Note, #3514 is divided on three separate PRs. Current PR is the first
of three.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Manual testing and updated CI unit tests

Prerequisites:

1. `uv run --with llama-stack llama stack list-deps starter | xargs -L1
uv pip install`

2. `llama stack run starter `

```
INFO     2025-10-23 15:36:17,387 llama_stack.cli.stack.run:100 cli: Using run configuration:                            
         /Users/ianmiller/llama-stack/llama_stack/distributions/starter/run.yaml                                        
INFO     2025-10-23 15:36:17,423 llama_stack.cli.stack.run:157 cli: HTTPS enabled with certificates:                    
           Key: None                                                                                                    
           Cert: None                                                                                                   
INFO     2025-10-23 15:36:17,424 llama_stack.cli.stack.run:159 cli: Listening on ['::', '0.0.0.0']:8321                 
INFO     2025-10-23 15:36:17,749 llama_stack.core.server.server:521 core::server: Run configuration:                    
INFO     2025-10-23 15:36:17,756 llama_stack.core.server.server:524 core::server: apis:                                 
         - agents                                                                                                       
         - batches                                                                                                      
         - datasetio                                                                                                    
         - eval                                                                                                         
         - files                                                                                                        
         - inference                                                                                                    
         - post_training                                                                                                
         - safety                                                                                                       
         - scoring                                                                                                      
         - tool_runtime                                                                                                 
         - vector_io                                                                                                    
         image_name: starter                                                                                            
         providers:                                                                                                     
           agents:                                                                                                      
           - config:                                                                                                    
               persistence:                                                                                             
                 agent_state:                                                                                           
                   backend: kv_default                                                                                  
                   namespace: agents                                                                                    
                 responses:                                                                                             
                   backend: sql_default                                                                                 
                   max_write_queue_size: 10000                                                                          
                   num_writers: 4                                                                                       
                   table_name: responses                                                                                
             provider_id: meta-reference                                                                                
             provider_type: inline::meta-reference                                                                      
           batches:                                                                                                     
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: batches                                                                                     
             provider_id: reference                                                                                     
             provider_type: inline::reference                                                                           
           datasetio:                                                                                                   
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: datasetio::huggingface                                                                      
             provider_id: huggingface                                                                                   
             provider_type: remote::huggingface                                                                         
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: datasetio::localfs                                                                          
             provider_id: localfs                                                                                       
             provider_type: inline::localfs                                                                             
           eval:                                                                                                        
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: eval                                                                                        
             provider_id: meta-reference                                                                                
             provider_type: inline::meta-reference                                                                      
           files:                                                                                                       
           - config:                                                                                                    
               metadata_store:                                                                                          
                 backend: sql_default                                                                                   
                 table_name: files_metadata                                                                             
               storage_dir: /Users/ianmiller/.llama/distributions/starter/files                                         
             provider_id: meta-reference-files                                                                          
             provider_type: inline::localfs                                                                             
           inference:                                                                                                   
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.fireworks.ai/inference/v1                                                               
             provider_id: fireworks                                                                                     
             provider_type: remote::fireworks                                                                           
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.together.xyz/v1                                                                         
             provider_id: together                                                                                      
             provider_type: remote::together                                                                            
           - config: {}                                                                                                 
             provider_id: bedrock                                                                                       
             provider_type: remote::bedrock                                                                             
           - config:                                                                                                    
               api_key: '********'                                                                                      
               base_url: https://api.openai.com/v1                                                                      
             provider_id: openai                                                                                        
             provider_type: remote::openai                                                                              
           - config:                                                                                                    
               api_key: '********'                                                                                      
             provider_id: anthropic                                                                                     
             provider_type: remote::anthropic                                                                           
           - config:                                                                                                    
               api_key: '********'                                                                                      
             provider_id: gemini                                                                                        
             provider_type: remote::gemini                                                                              
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.groq.com                                                                                
             provider_id: groq                                                                                          
             provider_type: remote::groq                                                                                
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.sambanova.ai/v1                                                                         
             provider_id: sambanova                                                                                     
             provider_type: remote::sambanova                                                                           
           - config: {}                                                                                                 
             provider_id: sentence-transformers                                                                         
             provider_type: inline::sentence-transformers                                                               
           post_training:                                                                                               
           - config:                                                                                                    
               checkpoint_format: meta                                                                                  
             provider_id: torchtune-cpu                                                                                 
             provider_type: inline::torchtune-cpu                                                                       
           safety:                                                                                                      
           - config:                                                                                                    
               excluded_categories: []                                                                                  
             provider_id: llama-guard                                                                                   
             provider_type: inline::llama-guard                                                                         
           - config: {}                                                                                                 
             provider_id: code-scanner                                                                                  
             provider_type: inline::code-scanner                                                                        
           scoring:                                                                                                     
           - config: {}                                                                                                 
             provider_id: basic                                                                                         
             provider_type: inline::basic                                                                               
           - config: {}                                                                                                 
             provider_id: llm-as-judge                                                                                  
             provider_type: inline::llm-as-judge                                                                        
           - config:                                                                                                    
               openai_api_key: '********'                                                                               
             provider_id: braintrust                                                                                    
             provider_type: inline::braintrust                                                                          
           tool_runtime:                                                                                                
           - config:                                                                                                    
               api_key: '********'                                                                                      
               max_results: 3                                                                                           
             provider_id: brave-search                                                                                  
             provider_type: remote::brave-search                                                                        
           - config:                                                                                                    
               api_key: '********'                                                                                      
               max_results: 3                                                                                           
             provider_id: tavily-search                                                                                 
             provider_type: remote::tavily-search                                                                       
           - config: {}                                                                                                 
             provider_id: rag-runtime                                                                                   
             provider_type: inline::rag-runtime                                                                         
           - config: {}                                                                                                 
             provider_id: model-context-protocol                                                                        
             provider_type: remote::model-context-protocol                                                              
           vector_io:                                                                                                   
           - config:                                                                                                    
               persistence:                                                                                             
                 backend: kv_default                                                                                    
                 namespace: vector_io::faiss                                                                            
             provider_id: faiss                                                                                         
             provider_type: inline::faiss                                                                               
           - config:                                                                                                    
               db_path: /Users/ianmiller/.llama/distributions/starter/sqlite_vec.db                                     
               persistence:                                                                                             
                 backend: kv_default                                                                                    
                 namespace: vector_io::sqlite_vec                                                                       
             provider_id: sqlite-vec                                                                                    
             provider_type: inline::sqlite-vec                                                                          
         registered_resources:                                                                                          
           benchmarks: []                                                                                               
           datasets: []                                                                                                 
           models: []                                                                                                   
           scoring_fns: []                                                                                              
           shields: []                                                                                                  
           tool_groups:                                                                                                 
           - provider_id: tavily-search                                                                                 
             toolgroup_id: builtin::websearch                                                                           
           - provider_id: rag-runtime                                                                                   
             toolgroup_id: builtin::rag                                                                                 
           vector_stores: []                                                                                            
         server:                                                                                                        
           port: 8321                                                                                                   
         storage:                                                                                                       
           backends:                                                                                                    
             kv_default:                                                                                                
               db_path: /Users/ianmiller/.llama/distributions/starter/kvstore.db                                        
               type: kv_sqlite                                                                                          
             sql_default:                                                                                               
               db_path: /Users/ianmiller/.llama/distributions/starter/sql_store.db                                      
               type: sql_sqlite                                                                                         
           stores:                                                                                                      
             conversations:                                                                                             
               backend: sql_default                                                                                     
               table_name: openai_conversations                                                                         
             inference:                                                                                                 
               backend: sql_default                                                                                     
               max_write_queue_size: 10000                                                                              
               num_writers: 4                                                                                           
               table_name: inference_store                                                                              
             metadata:                                                                                                  
               backend: kv_default                                                                                      
               namespace: registry                                                                                      
             prompts:                                                                                                   
               backend: kv_default                                                                                      
               namespace: prompts                                                                                       
         telemetry:                                                                                                     
           enabled: true                                                                                                
         vector_stores:                                                                                                 
           default_embedding_model:                                                                                     
             model_id: nomic-ai/nomic-embed-text-v1.5                                                                   
             provider_id: sentence-transformers                                                                         
           default_provider_id: faiss                                                                                   
         version: 2                                                                                                     
                                                                                                                        
INFO     2025-10-23 15:36:20,032 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue        
         disabled for SQLite to avoid concurrency issues                                                                
WARNING  2025-10-23 15:36:20,422 llama_stack.providers.inline.telemetry.meta_reference.telemetry:84 telemetry:          
         OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry                                                     
INFO     2025-10-23 15:36:22,379 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils:               
         OpenAIInferenceAdapter.list_provider_model_ids() returned 105 models                                           
INFO     2025-10-23 15:36:22,703 uvicorn.error:84 uncategorized: Started server process [17328]                         
INFO     2025-10-23 15:36:22,704 uvicorn.error:48 uncategorized: Waiting for application startup.                       
INFO     2025-10-23 15:36:22,706 llama_stack.core.server.server:179 core::server: Starting up Llama Stack server        
         (version: 0.3.0)                                                                                               
INFO     2025-10-23 15:36:22,707 llama_stack.core.stack:470 core: starting registry refresh task                        
INFO     2025-10-23 15:36:22,708 uvicorn.error:62 uncategorized: Application startup complete.                          
INFO     2025-10-23 15:36:22,708 uvicorn.error:216 uncategorized: Uvicorn running on http://['::', '0.0.0.0']:8321      
         (Press CTRL+C to quit)   
```
As you can see, prompts are attached to stores in config

Testing:

1. Create prompt:

```
curl -X POST http://localhost:8321/v1/prompts \                 
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.",
    "variables": ["name", "company", "role", "tone"]
  }'
```

`{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is
{{role}} at {{company}}. Remember, {{name}}, to be
{{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}%
`

2. Get prompt:

`curl -X GET
http://localhost:8321/v1/prompts/pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f`

`{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is
{{role}} at {{company}}. Remember, {{name}}, to be
{{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}%
`

3. Query sqlite KV storage to check created prompt:

```
sqlite> .mode column
sqlite> .headers on
sqlite> SELECT * FROM kvstore WHERE key LIKE 'prompts:v1:%';
key                                                           value                                                         expiration
------------------------------------------------------------  ------------------------------------------------------------  ----------
prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e  {"prompt_id": "pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab            
163f:1                                                        5f6e163f", "prompt": "Hello {{name}}! You are working at {{c            
                                                              ompany}}. Your role is {{role}} at {{company}}. Remember, {{            
                                                              name}}, to be {{tone}}.", "version": 1, "variables": ["name"            
                                                              , "company", "role", "tone"], "is_default": false}                      

prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e  1                                                                       
163f:default                                                                                                                          
sqlite> 
```
2025-10-27 11:12:12 -07:00
Luis Tomas Bolivar
63422e5b36
fix!: Enhance response API support to not fail with tool calling (#3385)
Some checks failed
Python Package Build Test / build (3.12) (push) Failing after 8s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 5s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 6s
Python Package Build Test / build (3.13) (push) Failing after 6s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 10s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Unit Tests / unit-tests (3.12) (push) Failing after 19s
Test External API and Providers / test-external (venv) (push) Failing after 1m3s
Vector IO Integration Tests / test-matrix (push) Failing after 1m6s
API Conformance Tests / check-schema-compatibility (push) Successful in 1m17s
UI Tests / ui-tests (22) (push) Successful in 1m18s
Pre-commit / pre-commit (push) Successful in 3m5s
# What does this PR do?
Introduces two main fixes to enhance the stability of Responses API when
dealing with tool calling responses and structured outputs.

### Changes Made

1. It added OpenAIResponseOutputMessageMCPCall and ListTools to
OpenAIResponseInput but
https://github.com/llamastack/llama-stack/pull/3810 got merge that did
the same in a different way. Still this PR does it in a way that keep
the sync between OpenAIResponsesOutput and the allowed objects in
OpenAIResponseInput.

2. Add protection in case self.ctx.response_format does not have type
attribute

BREAKING CHANGE: OpenAIResponseInput now uses OpenAIResponseOutput union
type.
This is semantically equivalent - all previously accepted types are
still supported
via the OpenAIResponseOutput union. This improves type consistency and
maintainability.
2025-10-27 09:33:02 -07:00
ehhuang
8265d4efc8
chore(telemetry): code cleanup (#3897)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 14s
UI Tests / ui-tests (22) (push) Successful in 43s
Pre-commit / pre-commit (push) Successful in 1m35s
# What does this PR do?
Clean up telemetry code since the telemetry API has been remove.
- moved telemetry files out of providers to core
- removed from Api

## Test Plan

❯ OTEL_SERVICE_NAME=llama_stack
OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318 uv run llama stack run
starter
❯ curl http://localhost:8321/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openai/gpt-4o-mini",
    "messages": [
      {
        "role": "user",
        "content": "Hello!"
      }
    ]
  }'

-> verify traces in Grafana

CI
2025-10-23 23:13:02 -07:00
ehhuang
9916cb3b17
chore: support default model in moderations API (#3890)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Test External API and Providers / test-external (venv) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
UI Tests / ui-tests (22) (push) Successful in 41s
Pre-commit / pre-commit (push) Successful in 1m33s
# What does this PR do?
https://platform.openai.com/docs/api-reference/moderations supports
optional model parameter.

This PR adds support for using moderations API with model=None if a
default shield id is provided via safety config.

## Test Plan
added tests

manual test:
```
> SAFETY_MODEL='together/meta-llama/Llama-Guard-4-12B'   uv run llama stack run starter
> curl http://localhost:8321/v1/moderations \
  -H "Content-Type: application/json" \
  -d '{
    "input": [
        "hello"
    ]
  }'
```
2025-10-23 16:03:53 -07:00
Ashwin Bharambe
7b90e0e9c8
test: suppress expected error logs in SSE test (#3886)
Our unit test outputs are filled with all kinds of obscene logs. This
makes it really hard to spot real issues quickly. The problem is that
these logs are necessary to output at the given logging level when the
server is operating normally. It's just that we don't want to see some
of them (especially the noisy ones) during tests.

This PR begins the cleanup. We pytest's caplog fixture to for
suppression.
2025-10-22 14:34:32 -07:00
dependabot[bot]
8885cea8d7
fix(conversations)!: update Conversations API definitions (was: bump openai from 1.107.0 to 2.5.0) (#3847)
Bumps [openai](https://github.com/openai/openai-python) from 1.107.0 to
2.5.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/releases">openai's
releases</a>.</em></p>
<blockquote>
<h2>v2.5.0</h2>
<h2>2.5.0 (2025-10-17)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.4.0...v2.5.0">v2.4.0...v2.5.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> api update (<a
href="8b280d57d6">8b280d5</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>bump <code>httpx-aiohttp</code> version to 0.1.9 (<a
href="67f2f0afe5">67f2f0a</a>)</li>
</ul>
<h2>v2.4.0</h2>
<h2>2.4.0 (2025-10-16)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.3.0...v2.4.0">v2.3.0...v2.4.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> Add support for gpt-4o-transcribe-diarize on
audio/transcriptions endpoint (<a
href="bdbe9b8f44">bdbe9b8</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>fix dangling comment (<a
href="da14e99606">da14e99</a>)</li>
<li><strong>internal:</strong> detect missing future annotations with
ruff (<a
href="2672b8f072">2672b8f</a>)</li>
</ul>
<h2>v2.3.0</h2>
<h2>2.3.0 (2025-10-10)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.2.0...v2.3.0">v2.2.0...v2.3.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> comparison filter in/not in (<a
href="aa49f626a6">aa49f62</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li><strong>package:</strong> bump jiter to &gt;=0.10.0 to support
Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)
(<a
href="aa445cab5c">aa445ca</a>)</li>
</ul>
<h2>v2.2.0</h2>
<h2>2.2.0 (2025-10-06)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.1.0...v2.2.0">v2.1.0...v2.2.0</a></p>
<h3>Features</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/openai/openai-python/blob/main/CHANGELOG.md">openai's
changelog</a>.</em></p>
<blockquote>
<h2>2.5.0 (2025-10-17)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.4.0...v2.5.0">v2.4.0...v2.5.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> api update (<a
href="8b280d57d6">8b280d5</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>bump <code>httpx-aiohttp</code> version to 0.1.9 (<a
href="67f2f0afe5">67f2f0a</a>)</li>
</ul>
<h2>2.4.0 (2025-10-16)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.3.0...v2.4.0">v2.3.0...v2.4.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> Add support for gpt-4o-transcribe-diarize on
audio/transcriptions endpoint (<a
href="bdbe9b8f44">bdbe9b8</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li>fix dangling comment (<a
href="da14e99606">da14e99</a>)</li>
<li><strong>internal:</strong> detect missing future annotations with
ruff (<a
href="2672b8f072">2672b8f</a>)</li>
</ul>
<h2>2.3.0 (2025-10-10)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.2.0...v2.3.0">v2.2.0...v2.3.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> comparison filter in/not in (<a
href="aa49f626a6">aa49f62</a>)</li>
</ul>
<h3>Chores</h3>
<ul>
<li><strong>package:</strong> bump jiter to &gt;=0.10.0 to support
Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)
(<a
href="aa445cab5c">aa445ca</a>)</li>
</ul>
<h2>2.2.0 (2025-10-06)</h2>
<p>Full Changelog: <a
href="https://github.com/openai/openai-python/compare/v2.1.0...v2.2.0">v2.1.0...v2.2.0</a></p>
<h3>Features</h3>
<ul>
<li><strong>api:</strong> dev day 2025 launches (<a
href="38ac0093eb">38ac009</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="513ae76253"><code>513ae76</code></a>
release: 2.5.0 (<a
href="https://redirect.github.com/openai/openai-python/issues/2694">#2694</a>)</li>
<li><a
href="ebf32212f7"><code>ebf3221</code></a>
release: 2.4.0</li>
<li><a
href="e043d7b164"><code>e043d7b</code></a>
chore: fix dangling comment</li>
<li><a
href="25cbb74f83"><code>25cbb74</code></a>
feat(api): Add support for gpt-4o-transcribe-diarize on
audio/transcriptions ...</li>
<li><a
href="8cdfd0650e"><code>8cdfd06</code></a>
codegen metadata</li>
<li><a
href="d5c64434b7"><code>d5c6443</code></a>
codegen metadata</li>
<li><a
href="b20a9e7b81"><code>b20a9e7</code></a>
chore(internal): detect missing future annotations with ruff</li>
<li><a
href="e5f93f5dae"><code>e5f93f5</code></a>
release: 2.3.0</li>
<li><a
href="044878859c"><code>0448788</code></a>
feat(api): comparison filter in/not in</li>
<li><a
href="85a91ade61"><code>85a91ad</code></a>
chore(package): bump jiter to &gt;=0.10.0 to support Python 3.14 (<a
href="https://redirect.github.com/openai/openai-python/issues/2618">#2618</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/openai/openai-python/compare/v1.107.0...v2.5.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=openai&package-manager=uv&previous-version=1.107.0&new-version=2.5.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-22 12:32:48 -07:00
Jiayi Ni
bb1ebb3c6b
feat: Add rerank models and rerank API change (#3831)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Extend the model type to include rerank models.
- Implement `rerank()` method in inference router.
- Add `rerank_model_list` to `OpenAIMixin` to enable providers to
register and identify rerank models
- Update documentation.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
```
pytest tests/unit/providers/utils/inference/test_openai_mixin.py
```
2025-10-22 12:02:28 -07:00
slekkala1
eb2b240594
fix: remove consistency checks (#3881)
# What does this PR do?
metadata is conflicting with the default embedding model set on server
side via extra body, removing the check and just letting metadata take
precedence over extra body

`ValueError: Embedding model inconsistent between metadata
('text-embedding-3-small') and extra_body
     ('sentence-transformers/nomic-ai/nomic-embed-text-v1.5')`
## Test Plan
CI
2025-10-21 14:40:14 -07:00
Ashwin Bharambe
bd3c473208
revert: "chore(cleanup)!: remove tool_runtime.rag_tool" (#3877)
Reverts llamastack/llama-stack#3871

This PR broke RAG (even from Responses -- there _is_ a dependency)
2025-10-21 11:22:06 -07:00
Ashwin Bharambe
0e96279bee
chore(cleanup)!: remove tool_runtime.rag_tool (#3871)
Kill the `builtin::rag` tool group completely since it is no longer
targeted. We use the Responses implementation for knowledge_search which
uses the `openai_vector_stores` pathway.

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-20 22:26:21 -07:00
Ashwin Bharambe
122de785c4
chore(cleanup)!: kill vector_db references as far as possible (#3864)
There should not be "vector db" anywhere.
2025-10-20 20:06:16 -07:00
ehhuang
444f6c88f3
chore: remove build.py (#3869)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 3s
Test llama stack list-deps / list-deps-from-config (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 20s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 23s
Test llama stack list-deps / list-deps (push) Failing after 18s
UI Tests / ui-tests (22) (push) Successful in 57s
Pre-commit / pre-commit (push) Successful in 1m52s
# What does this PR do?


## Test Plan
CI
2025-10-20 16:28:15 -07:00