mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-20 03:40:05 +00:00
24 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
31b088978a
|
fix: Fix /vector-stores/create API when vector store with duplicate name (#2617)
# What does this PR do? Resolves https://github.com/meta-llama/llama-stack/issues/2735 Currently, if you test against OpenAI's Vector Stores API the `client.vector_stores.search` call fails with an invalid vector_db during routing (see the script referenced in the clickable item under the Test Plan section). This PR ensures that `client.vector_stores.search()` is compatible with OpenAI's Vector Stores API. Two biggest changes: 1. The `name`, which was previously used as the `vector_db_id`, has been changed to be consistent with OpenAI's `vs_{uuid}` format. 2. The vector store ID has to be referenced by the ID, the name is not reliable as every `client.vector_stores.create` results in a new vector store. NOTE: I believe this is a breaking change for end users as they'll need to update their VectorDB identifiers. ## Test Plan Unit tests: ```bash ./scripts/unit-tests.sh tests/unit/providers/vector_io/ -v ``` Integration tests: ```bash ENABLE_MILVUS=milvus llama stack run /Users/farceo/dev/llama-stack/llama_stack/templates/starter/run.yaml --image-type venv LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/vector_io/test_openai_vector_stores.py --embedding-model=all-MiniLM-L6-v2 -vv ``` Unit tests and test script below 👇 <details> <summary>Click here for script used to test OpenAI and Llama Stack Vector Store implementation</summary> ```python import json import argparse from openai import OpenAI, pagination import logging from colorama import Fore, Style, init import traceback import os # Initialize colorama for color support in terminal init(autoreset=True) # Setup basic logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') DEMO_VECTOR_STORE_NAME = "Support FAQ FJA" global DEMO_VECTOR_STORE_ID global DEMO_VECTOR_STORE_ID2 def colored_print(color, text): """Prints text to the console with the specified color.""" print(f"{color}{text}{Style.RESET_ALL}") def log_and_print(color, message, level=logging.INFO): """Logs a message and prints it to the console with the specified color.""" logging.log(level, message) colored_print(color, message) def run_tests(client, prefix="openai"): """ Runs all tests using the provided OpenAI client and saves the output to JSON files with the given prefix. """ # Create the directory if it doesn't exist os.makedirs('openai_testing', exist_ok=True) # Default values in case tests fail global DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2 DEMO_VECTOR_STORE_ID = None DEMO_VECTOR_STORE_ID2 = None def test_idempotent_vector_store_creation(): """ Test that creating a vector store with the same name is idempotent. """ log_and_print(Fore.BLUE, "Starting vector store creation test...") try: vector_store = client.vector_stores.create( name=DEMO_VECTOR_STORE_NAME, ) # Attempt to create the same vector store again vector_store2 = client.vector_stores.create( name=DEMO_VECTOR_STORE_NAME, ) # Check instead of assert if vector_store2.id != vector_store.id: log_and_print(Fore.YELLOW, f"FAILED IDEMPOTENCY: the same VectorStore name for {prefix.upper()} does not return the same ID", level=logging.WARNING) else: log_and_print(Fore.GREEN, f"PASSED IDEMPOTENCY: f{vector_store2.id} == {vector_store.id} the same VectorStore name for {prefix.upper()} returns the same ID") vector_store_data = vector_store.to_dict() log_and_print(Fore.WHITE, f"vector_stores.create = {json.dumps(vector_store_data, indent=2)}") with open(f'openai_testing/{prefix}_vector_store_create.json', 'w') as f: json.dump(vector_store_data, f, indent=2) global DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2 DEMO_VECTOR_STORE_ID = vector_store.id DEMO_VECTOR_STORE_ID2 = vector_store2.id return DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2 except Exception as e: log_and_print(Fore.RED, f"Idempotent vector store creation test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) # Create a fallback vector store ID if needed if 'vector_store' in locals() and vector_store: DEMO_VECTOR_STORE_ID = vector_store.id return DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2 def test_vector_store_list(): """ Test listing vector stores. """ log_and_print(Fore.BLUE, "Starting vector store list test...") try: vector_stores = client.vector_stores.list() # Check instead of assert if not isinstance(vector_stores, pagination.SyncCursorPage): log_and_print(Fore.YELLOW, f"FAILED: Expected a list of vector stores, got {type(vector_stores)}", level=logging.WARNING) else: log_and_print(Fore.GREEN, "Vector store list test passed!") vector_stores_data = vector_stores.to_dict() log_and_print(Fore.WHITE, f"vector_stores.list = {json.dumps(vector_stores_data, indent=2)}") with open(f'openai_testing/{prefix}_vector_store_list.json', 'w') as f: json.dump(vector_stores_data, f, indent=2) except Exception as e: log_and_print(Fore.RED, f"Vector store list test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) def test_retrieve_vector_store(): """ Test retrieving a specific vector store. """ log_and_print(Fore.BLUE, "Starting retrieve vector store test...") if not DEMO_VECTOR_STORE_ID: log_and_print(Fore.YELLOW, "Skipping retrieve vector store test - no vector store ID available", level=logging.WARNING) return try: vector_store = client.vector_stores.retrieve( vector_store_id=DEMO_VECTOR_STORE_ID, ) # Check instead of assert if vector_store.id != DEMO_VECTOR_STORE_ID: log_and_print(Fore.YELLOW, "FAILED: Retrieved vector store ID does not match", level=logging.WARNING) else: log_and_print(Fore.GREEN, "Retrieve vector store test passed!") vector_store_data = vector_store.to_dict() log_and_print(Fore.WHITE, f"vector_stores.retrieve = {json.dumps(vector_store_data, indent=2)}") with open(f'openai_testing/{prefix}_vector_store_retrieve.json', 'w') as f: json.dump(vector_store_data, f, indent=2) except Exception as e: log_and_print(Fore.RED, f"Retrieve vector store test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) def test_modify_vector_store(): """ Test modifying a vector store. """ log_and_print(Fore.BLUE, "Starting modify vector store test...") if not DEMO_VECTOR_STORE_ID: log_and_print(Fore.YELLOW, "Skipping modify vector store test - no vector store ID available", level=logging.WARNING) return try: updated_vector_store = client.vector_stores.update( vector_store_id=DEMO_VECTOR_STORE_ID, name="Updated Support FAQ FJA", ) # Check instead of assert if updated_vector_store.name != "Updated Support FAQ FJA": log_and_print(Fore.YELLOW, "FAILED: Vector store name was not updated correctly", level=logging.WARNING) else: log_and_print(Fore.GREEN, "Modify vector store test passed!") updated_vector_store_data = updated_vector_store.to_dict() log_and_print(Fore.WHITE, f"vector_stores.modify = {json.dumps(updated_vector_store_data, indent=2)}") with open(f'openai_testing/{prefix}_vector_store_modify.json', 'w') as f: json.dump(updated_vector_store_data, f, indent=2) except Exception as e: log_and_print(Fore.RED, f"Modify vector store test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) def test_delete_vector_store(): """ Test deleting a vector store. """ log_and_print(Fore.BLUE, "Starting delete vector store test...") if not DEMO_VECTOR_STORE_ID2: log_and_print(Fore.YELLOW, "Skipping delete vector store test - no second vector store ID available", level=logging.WARNING) return try: response = client.vector_stores.delete( vector_store_id=DEMO_VECTOR_STORE_ID2, ) log_and_print(Fore.GREEN, "Delete vector store test passed!") response_data = response.to_dict() log_and_print(Fore.WHITE, f"Vector store delete response = {json.dumps(response_data, indent=2)}") with open(f'openai_testing/{prefix}_vector_store_delete.json', 'w') as f: json.dump(response_data, f, indent=2) except Exception as e: log_and_print(Fore.RED, f"Delete vector store test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) def test_create_vector_store_file(): log_and_print(Fore.BLUE, "Starting create vector store file test...") if not DEMO_VECTOR_STORE_ID: log_and_print(Fore.YELLOW, "Skipping create vector store file test - no vector store ID available", level=logging.WARNING) return try: # create jsonl of files as an example with open("mydata.jsonl", "w") as f: f.write('{"text": "What is the return policy?", "metadata": {"category": "support"}}\n') f.write('{"text": "How do I reset my password?", "metadata": {"category": "support"}}\n') f.write('{"text": "Where can I find my order history?", "metadata": {"category": "support"}}\n') f.write('{"text": "What are the shipping options?", "metadata": {"category": "support"}}\n') f.write('{"text": "What is your favorite banana?", "metadata": {"category": "support"}}\n') # Create a simple text file if my_data_small.txt doesn't exist if not os.path.exists("my_data_small.txt"): with open("my_data_small.txt", "w") as f: f.write("This is a test file for vector store testing.\n") created_file = client.files.create( file=open("my_data_small.txt", "rb"), purpose="assistants", ) created_file_data = created_file.to_dict() log_and_print(Fore.WHITE, f"Created file {json.dumps(created_file_data, indent=2)}") with open(f'openai_testing/{prefix}_file_create.json', 'w') as f: json.dump(created_file_data, f, indent=2) retrieved_files = client.files.retrieve(created_file.id) retrieved_files_data = retrieved_files.to_dict() log_and_print(Fore.WHITE, f"Retrieved file {json.dumps(retrieved_files_data, indent=2)}") with open(f'openai_testing/{prefix}_file_retrieve.json', 'w') as f: json.dump(retrieved_files_data, f, indent=2) vector_store_file = client.vector_stores.files.create( vector_store_id=DEMO_VECTOR_STORE_ID, file_id=created_file.id, ) log_and_print(Fore.GREEN, "Create vector store file test passed!") except Exception as e: log_and_print(Fore.RED, f"Create vector store file test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) def test_search_vector_store(): """ Test searching a vector store. """ log_and_print(Fore.BLUE, "Starting search vector store test...") if not DEMO_VECTOR_STORE_ID: log_and_print(Fore.YELLOW, "Skipping search vector store test - no vector store ID available", level=logging.WARNING) return try: query = "What is the banana policy?" search_results = client.vector_stores.search( vector_store_id=DEMO_VECTOR_STORE_ID, query=query, max_num_results=10, ranking_options={ 'ranker': 'default-2024-11-15', 'score_threshold': 0.0, }, rewrite_query=False, ) # Check instead of assert if not isinstance(search_results, pagination.SyncPage): log_and_print(Fore.YELLOW, f"FAILED: Expected a list of search results, got {type(search_results)}", level=logging.WARNING) else: log_and_print(Fore.GREEN, "Search vector store test passed!") search_results_dict = search_results.to_dict() log_and_print(Fore.WHITE, f"Search results = {search_results_dict}") with open(f'openai_testing/{prefix}_vector_store_search.json', 'w') as f: json.dump(search_results_dict, f, indent=2) log_and_print(Fore.WHITE, f"vector_stores.search = {search_results.to_json()}") except Exception as e: log_and_print(Fore.RED, f"Search vector store test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) # Run all tests in sequence, even if some fail test_results = [] try: result = test_idempotent_vector_store_creation() if result and len(result) == 2: DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2 = result test_results.append(True) except Exception as e: log_and_print(Fore.RED, f"Vector store creation test failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) test_results.append(False) for test_func in [ test_vector_store_list, test_retrieve_vector_store, test_modify_vector_store, test_delete_vector_store, test_create_vector_store_file, test_search_vector_store ]: try: test_func() test_results.append(True) except Exception as e: log_and_print(Fore.RED, f"{test_func.__name__} failed: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) test_results.append(False) if all(test_results): log_and_print(Fore.GREEN, f"All {prefix} tests completed successfully!") else: failed_count = test_results.count(False) log_and_print(Fore.YELLOW, f"{failed_count} {prefix} test(s) failed, but script completed.") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run OpenAI and/or LlamaStack tests.") parser.add_argument( "--provider", type=str, default="llama", choices=["openai", "llama", "both"], help="Specify which environment to test: openai, llama, or both. Default is both.", ) args = parser.parse_args() try: if args.provider in ("openai", "both"): openai_client = OpenAI() run_tests(openai_client, prefix="openai") if args.provider in ("llama", "both"): llama_client = OpenAI(base_url="http://localhost:8321/v1/openai/v1", api_key="none") run_tests(llama_client, prefix="llama") log_and_print(Fore.GREEN, "All tests completed!") except Exception as e: log_and_print(Fore.RED, f"Tests failed to complete: {e}", level=logging.ERROR) logging.error(traceback.format_exc()) ``` </details> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> |
||
|
82f13fe83e
|
feat: Add ChunkMetadata to Chunk (#2497)
# What does this PR do? Adding `ChunkMetadata` so we can properly delete embeddings later. More specifically, this PR refactors and extends the chunk metadata handling in the vector database and introduces a distinction between metadata used for model context and backend-only metadata required for chunk management, storage, and retrieval. It also improves chunk ID generation and propagation throughout the stack, enhances test coverage, and adds new utility modules. ```python class ChunkMetadata(BaseModel): """ `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that will NOT be inserted into the context during inference, but is required for backend functionality. Use `metadata` in `Chunk` for metadata that will be used during inference. """ document_id: str | None = None chunk_id: str | None = None source: str | None = None created_timestamp: int | None = None updated_timestamp: int | None = None chunk_window: str | None = None chunk_tokenizer: str | None = None chunk_embedding_model: str | None = None chunk_embedding_dimension: int | None = None content_token_count: int | None = None metadata_token_count: int | None = None ``` Eventually we can migrate the document_id out of the `metadata` field. I've introduced the changes so that `ChunkMetadata` is backwards compatible with `metadata`. <!-- If resolving an issue, uncomment and update the line below --> Closes https://github.com/meta-llama/llama-stack/issues/2501 ## Test Plan Added unit tests --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> |
||
|
cfee63bd0d
|
feat: Add search_mode support to OpenAI vector store API (#2500)
Some checks failed
Integration Tests / test-matrix (http, 3.13, scoring) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 11s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 7s
Integration Tests / test-matrix (http, 3.13, post_training) (push) Failing after 17s
Python Package Build Test / build (3.13) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.13, providers) (push) Failing after 18s
Test Llama Stack Build / build-single-provider (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.13, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.13, post_training) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.13, tool_runtime) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.13, tool_runtime) (push) Failing after 17s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.13, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.13, inference) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.13, agents) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.13, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.13, providers) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.12, vector_io) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.13, scoring) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.13, datasets) (push) Failing after 19s
Test Llama Stack Build / build (push) Failing after 5s
Update ReadTheDocs / update-readthedocs (push) Failing after 44s
Test External Providers / test-external-providers (venv) (push) Failing after 47s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 50s
Pre-commit / pre-commit (push) Successful in 2m12s
# What does this PR do? Add search_mode parameter (vector/keyword/hybrid) to openai_search_vector_store method. Fixes OpenAPI code generation by using str instead of Literal type. Closes: #2459 ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> |
||
|
73c18feac4
|
fix: update the signature of openai_list_files_in_vector_store in all VectorIO impls (#2503) | ||
|
f394c7f2d9
|
feat: Add missing Vector Store Files API surface (#2468)
Some checks failed
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 16s
Integration Tests / test-matrix (http, 3.11, agents) (push) Failing after 26s
Integration Tests / test-matrix (http, 3.12, tool_runtime) (push) Failing after 19s
Python Package Build Test / build (3.11) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 6s
Python Package Build Test / build (3.12) (push) Failing after 3s
Integration Tests / test-matrix (http, 3.12, providers) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.11, vector_io) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 8s
Python Package Build Test / build (3.13) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.11, scoring) (push) Failing after 24s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 20s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 15s
Integration Tests / test-matrix (http, 3.12, datasets) (push) Failing after 21s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 15s
Integration Tests / test-matrix (http, 3.11, inference) (push) Failing after 22s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 48s
Test External Providers / test-external-providers (venv) (push) Failing after 43s
Unit Tests / unit-tests (3.13) (push) Failing after 52s
Pre-commit / pre-commit (push) Successful in 2m4s
# What does this PR do? This adds the ability to list, retrieve, update, and delete Vector Store Files. It implements these new APIs for the faiss and sqlite-vec providers, since those are the two that also have the rest of the vector store files implementation. Closes #2445 ## Test Plan ### test_openai_vector_stores Integration Tests There are a number of new integration tests added, which I ran for each provider as outlined below. faiss (from ollama distro): ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack run llama_stack/templates/ollama/run.yaml LLAMA_STACK_CONFIG=http://localhost:8321 \ pytest -sv tests/integration/vector_io/test_openai_vector_stores.py \ --embedding-model=all-MiniLM-L6-v2 ``` sqlite-vec (from starter distro): ``` llama stack run llama_stack/templates/starter/run.yaml LLAMA_STACK_CONFIG=http://localhost:8321 \ pytest -sv tests/integration/vector_io/test_openai_vector_stores.py \ --embedding-model=all-MiniLM-L6-v2 ``` ### file_search verification tests I also ensured the file_search verification tests continue to work, both for faiss and sqlite-vec. faiss (ollama distro): ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack run llama_stack/templates/ollama/run.yaml pytest -sv tests/verifications/openai_api/test_responses.py \ -k'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=meta-llama/Llama-3.2-3B-Instruct ``` sqlite-vec (starter distro): ``` llama stack run llama_stack/templates/starter/run.yaml pytest -sv tests/verifications/openai_api/test_responses.py \ -k'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=together/meta-llama/Llama-3.2-3B-Instruct-Turbo ``` --------- Signed-off-by: Ben Browning <bbrownin@redhat.com> |
||
|
db2cd9e8f3
|
feat: support filters in file search (#2472)
# What does this PR do? Move to use vector_stores.search for file search tool in Responses, which supports filters. closes #2435 ## Test Plan Added e2e test with fitlers. myenv ❯ llama stack run llama_stack/templates/fireworks/run.yaml pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search and filters' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=meta-llama/Llama-3.3-70B-Instruct |
||
|
2e8054bede
|
feat: Implement hybrid search in SQLite-vec (#2312)
Some checks failed
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.11, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 25s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 24s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 22s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 41s
Test Llama Stack Build / generate-matrix (push) Successful in 37s
Test Llama Stack Build / build-single-provider (push) Failing after 37s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 35s
Test External Providers / test-external-providers (venv) (push) Failing after 5s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Unit Tests / unit-tests (3.11) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Test Llama Stack Build / build (push) Failing after 7s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 18s
Unit Tests / unit-tests (3.10) (push) Failing after 17s
Pre-commit / pre-commit (push) Successful in 2m0s
# What does this PR do? Add support for hybrid search mode in SQLite-vec provider, which combines keyword and vector search for better results. The implementation: - Adds hybrid search mode as a new option alongside vector and keyword search - Implements query_hybrid method in SQLiteVecIndex that: - First performs keyword search to get candidate matches - Then applies vector similarity search on those candidates - Updates documentation to reflect the new search mode This change improves search quality by leveraging both semantic similarity and keyword matching, while maintaining backward compatibility with existing vector and keyword search modes. ## Test Plan ``` pytest tests/unit/providers/vector_io/test_sqlite_vec.py -v -s --tb=short /Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:217: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset. The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session" warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET)) =============================================================================================== test session starts =============================================================================================== platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python cachedir: .pytest_cache metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.6-arm64-arm-64bit', 'Packages': {'pytest': '8.3.5', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'asyncio': '0.26.0', 'nbval': '0.11.0', 'cov': '6.1.1'}} rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack configfile: pyproject.toml plugins: html-4.1.1, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, anyio-4.8.0, asyncio-0.26.0, nbval-0.11.0, cov-6.1.1 asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function collected 10 items tests/unit/providers/vector_io/test_sqlite_vec.py::test_add_chunks PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search_k_greater_than_results PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_no_keyword_matches PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_score_threshold PASSED tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_different_embedding PASSED ``` --------- Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> |
||
|
941f505eb0
|
feat: File search tool for Responses API (#2426)
# What does this PR do? This is an initial working prototype of wiring up the `file_search` builtin tool for the Responses API to our existing rag knowledge search tool. This is me seeing what I could pull together on top of the bits we already have merged. This may not be the ideal way to implement this, and things like how I shuffle the vector store ids from the original response API tool request to the actual tool execution feel a bit hacky (grep for `tool_kwargs["vector_db_ids"]` in `_execute_tool_call` to see what I mean). ## Test Plan I stubbed in some new tests to exercise this using text and pdf documents. Note that this is currently under tests/verification only because it sometimes flakes with tool calling of the small Llama-3.2-3B model we run in CI (and that I use as an example below). We'd want to make the test a bit more robust in some way if we moved this over to tests/integration and ran it in CI. ### OpenAI SaaS (to verify test correctness) ``` pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search' \ --base-url=https://api.openai.com/v1 \ --model=gpt-4o ``` ### Fireworks with faiss vector store ``` llama stack run llama_stack/templates/fireworks/run.yaml pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=meta-llama/Llama-3.3-70B-Instruct ``` ### Ollama with faiss vector store This sometimes flakes on Ollama because the quantized small model doesn't always choose to call the tool to answer the user's question. But, it often works. ``` ollama run llama3.2:3b INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack run ./llama_stack/templates/ollama/run.yaml \ --image-type venv \ --env OLLAMA_URL="http://0.0.0.0:11434" pytest -sv tests/verifications/openai_api/test_responses.py \ -k'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=meta-llama/Llama-3.2-3B-Instruct ``` ### OpenAI provider with sqlite-vec vector store ``` llama stack run ./llama_stack/templates/starter/run.yaml --image-type venv pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=openai/gpt-4o-mini ``` ### Ensure existing vector store integration tests still pass ``` ollama run llama3.2:3b INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack run ./llama_stack/templates/ollama/run.yaml \ --image-type venv \ --env OLLAMA_URL="http://0.0.0.0:11434" LLAMA_STACK_CONFIG=http://localhost:8321 \ pytest -sv tests/integration/vector_io \ --text-model "meta-llama/Llama-3.2-3B-Instruct" \ --embedding-model=all-MiniLM-L6-v2 ``` --------- Signed-off-by: Ben Browning <bbrownin@redhat.com> |
||
|
0bc1747ed8
|
feat: update search for vector_stores (#2441)
Updated the `search` functionality return response to match openai. ## Test Plan ``` pytest -sv --stack-config=http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2 ``` |
||
|
de37a04c3e
|
fix: set appropriate defaults for params (#2434)
Some checks failed
Integration Tests / test-matrix (http, 3.11, post_training) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, agents) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 19s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 19s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 15s
Test External Providers / test-external-providers (venv) (push) Failing after 20s
Update ReadTheDocs / update-readthedocs (push) Failing after 17s
Unit Tests / unit-tests (3.12) (push) Failing after 20s
Unit Tests / unit-tests (3.11) (push) Failing after 1m39s
Unit Tests / unit-tests (3.13) (push) Failing after 1m37s
Unit Tests / unit-tests (3.10) (push) Failing after 1m41s
Pre-commit / pre-commit (push) Failing after 3h4m8s
Setting defaults to be `| None` else they get marked as required params in open-api spec. |
||
|
d55100d9b7
|
feat: OpenAIVectorIOMixin for vector_stores common logic (#2427)
Extracts common OpenAI vector-store code into its own mixin so that all providers can share the same core logic. This also makes it easy for Llama Stack to support both vector-stores and Llama Stack APIs in the interim so that both share the same underlying vector-dbs. Each provider contains storage specific logic to `create / edit / delete / list` vector dbs while the plumbing logic is standardized in the common code. Ensured that this works well with both faiss and sqllite-vec. ### Test Plan ``` llama stack run starter pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2 ``` |
||
|
5ac43268e8
|
feat: Add OpenAI compat /v1/vector_store APIs (#2423)
Some checks failed
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 11s
Integration Tests / test-matrix (http, 3.10, post_training) (push) Failing after 41s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 13s
Integration Tests / test-matrix (http, 3.10, tool_runtime) (push) Failing after 46s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 16s
Test External Providers / test-external-providers (venv) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 13s
Update ReadTheDocs / update-readthedocs (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 11s
Unit Tests / unit-tests (3.12) (push) Failing after 1m31s
Unit Tests / unit-tests (3.11) (push) Failing after 1m33s
Unit Tests / unit-tests (3.10) (push) Failing after 1m35s
Pre-commit / pre-commit (push) Failing after 3h13m41s
Adding OpenAI compat `/v1/vector-store` apis. This PR implements the `faiss` provider with followup PRs coming up for other providers. Added routes to create, update, delete, list vector stores. Also added route to search a vector store Inserting into vector stores is missing and will be a follow up diff. ### Test Plan - Added new integration test for testing the faiss provider ``` pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2 ``` |
||
|
e92301f2d7
|
feat(sqlite-vec): enable keyword search for sqlite-vec (#1439)
# What does this PR do? This PR introduces support for keyword based FTS5 search with BM25 relevance scoring. It makes changes to the existing EmbeddingIndex base class in order to support a search_mode and query_str parameter, that can be used for keyword based search implementations. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan run ``` pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto ``` Output: ``` pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto /Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset. The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session" warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET)) ====================================================== test session starts ======================================================= platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python cachedir: .pytest_cache metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}} rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack configfile: pyproject.toml plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0 asyncio: mode=auto, asyncio_default_fixture_loop_scope=None collected 7 items llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED ``` For reference, with the implementation, the fts table looks like below: ``` Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0 Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0 Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0 Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0 Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0 Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0 Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0 Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0 Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0 Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0 Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1 Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1 Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1 Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1 Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1 ``` Query results: Result 1: Sentence 5 from document 0 Result 2: Sentence 5 from document 1 Result 3: Sentence 5 from document 2 [//]: # (## Documentation) --------- Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> |
||
|
9e6561a1ec
|
chore: enable pyupgrade fixes (#1806)
# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com> |
||
|
cca9bd6cc3
|
feat: Qdrant inline provider (#1273)
# What does this PR do? Removed local execution option from the remote Qdrant provider and introduced an explicit inline provider for the embedded execution. Updated the ollama template to include this option: this part can be reverted in case we don't want to have two default `vector_io` providers. (Closes #1082) ## Test Plan Build and run an ollama distro: ```bash llama stack build --template ollama --image-type conda llama stack run --image-type conda ollama ``` Run one of the sample ingestionapplicatinos like [rag_with_vector_db.py](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py), but replace this line: ```py selected_vector_provider = vector_providers[0] ``` with the following, to use the `qdrant` provider: ```py selected_vector_provider = vector_providers[1] ``` After running the test code, verify the timestamp of the Qdrant store: ```bash % ls -ltr ~/.llama/distributions/ollama/qdrant.db/collection/test_vector_db_* total 784 -rw-r--r--@ 1 dmartino staff 401408 Feb 26 10:07 storage.sqlite ``` [//]: # (## Documentation) --------- Signed-off-by: Daniele Martinoli <dmartino@redhat.com> Co-authored-by: Francisco Arceo <farceo@redhat.com> |
||
|
d072b5fa0c
|
test: add unit test to ensure all config types are instantiable (#1601) | ||
|
314ee09ae3
|
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose should be didactic -- show the simplest implementation of the llama models and document the prompt formats, etc. This PR is the complement to https://github.com/meta-llama/llama-models/pull/279 ## Test Plan Ensure all `llama` CLI `model` sub-commands work: ```bash llama model list llama model download --model-id ... llama model prompt-format -m ... ``` Ran tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/ LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/ LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/ ``` Create a fresh venv `uv venv && source .venv/bin/activate` and run `llama stack build --template fireworks --image-type venv` followed by `llama stack run together --image-type venv` <-- the server runs Also checked that the OpenAPI generator can run and there is no change in the generated files as a result. ```bash cd docs/openapi_generator sh run_openapi_generator.sh ``` |
||
|
c0ee512980
|
build: configure ruff from pyproject.toml (#1100)
# What does this PR do? - Remove hardcoded configurations from pre-commit. - Allow configuration to be set via pyproject.toml. - Merge .ruff.toml settings into pyproject.toml. - Ensure the linter and formatter use the defined configuration instead of being overridden by pre-commit. Signed-off-by: Sébastien Han <seb@redhat.com> [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] [//]: # (## Documentation) Signed-off-by: Sébastien Han <seb@redhat.com> |
||
|
8ff27b58fa
|
chore: Consistent naming for VectorIO providers (#1023)
# What does this PR do? This changes all VectorIO providers classes to follow the pattern `<ProviderName>VectorIOConfig` and `<ProviderName>VectorIOAdapter`. All API endpoints for VectorIOs are currently consistent with `/vector-io`. Note that API endpoint for VectorDB stay unchanged as `/vector-dbs`. ## Test Plan I don't have a way to test all providers. This is a simple renaming so things should work as expected. --------- Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> |
||
|
e4a1579e63
|
build: format codebase imports using ruff linter (#1028)
# What does this PR do? - Configured ruff linter to automatically fix import sorting issues. - Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are applied. - Enabled the 'I' selection to focus on import-related linting rules. - Ran the linter, and formatted all codebase imports accordingly. - Removed the black dep from the "dev" group since we use ruff Signed-off-by: Sébastien Han <seb@redhat.com> [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] [//]: # (## Documentation) [//]: # (- [ ] Added a Changelog entry if the change is significant) Signed-off-by: Sébastien Han <seb@redhat.com> |
||
|
3856927ee8
|
fix: Update Qdrant support post-refactor (#1022)
# What does this PR do? I tried running the Qdrant provider and found some bugs. See #1021 for details. @terrytangyuan wrote there: > Please feel free to submit your changes in a PR. I fixed similar issues for pgvector provider. This might be an issue introduced from a refactoring. So I am submitting this PR. Closes #1021 ## Test Plan Here are the highlights for what I did to test this: References: - https://llama-stack.readthedocs.io/en/latest/getting_started/index.html - https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py - https://github.com/meta-llama/llama-stack/blob/main/docs/zero_to_hero_guide/README.md#build-configure-and-run-llama-stack Install and run Qdrant server: ``` podman pull qdrant/qdrant mkdir qdrant-data podman run -p 6333:6333 -v $(pwd)/qdrant-data:/qdrant/storage qdrant/qdrant ``` Install and run Llama Stack from the venv-support PR (mainly because I didn't want to install conda): ``` brew install cmake # Should just need this once git clone https://github.com/meta-llama/llama-models.git gh repo clone cdoern/llama-stack cd llama-stack gh pr checkout 1018 # This is the checkout that introduces venv support for build/run. Otherwise you have to use conda. Eventually this wil be part of main, hopefully. uv sync --extra dev uv pip install -e . source .venv/bin/activate uv pip install qdrant_client LLAMA_STACK_DIR=$(pwd) LLAMA_MODELS_DIR=../llama-models llama stack build --template ollama --image-type venv ``` ``` edit llama_stack/templates/ollama/run.yaml ``` in that editor under: ``` vector_io: ``` add: ``` - provider_id: qdrant provider_type: remote::qdrant config: {} ``` see https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/vector_io/qdrant/config.py#L14 for config options (but I didn't need any) ``` LLAMA_STACK_DIR=$(pwd) LLAMA_MODELS_DIR=../llama-models llama stack run ollama --image-type venv \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env OLLAMA_URL=$OLLAMA_URL ``` Then I tested it out in a notebook. Key highlights included: ``` qdrant_provider = None for provider in client.providers.list(): if provider.api == "vector_io" and provider.provider_id == "qdrant": qdrant_provider = provider qdrant_provider assert qdrant_provider is not None, "QDrant is not a provider. You need to edit the run yaml file you use in your `llama stack run` call" vector_db_id = f"test-vector-db-{uuid.uuid4().hex}" client.vector_dbs.register( vector_db_id=vector_db_id, embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, provider_id=qdrant_provider.provider_id, ) ``` Other than that, I just followed what was in https://llama-stack.readthedocs.io/en/latest/getting_started/index.html It would be good to have automated tests for this in the future, but that would be a big undertaking. Signed-off-by: Bill Murdock <bmurdock@redhat.com> |
||
|
34ab7a3b6c
|
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> |
||
|
c9e5578151
|
[memory refactor][5/n] Migrate all vector_io providers (#835)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming. |
||
|
3ae8585b65
|
[memory refactor][1/n] Rename Memory -> VectorIO, MemoryBanks -> VectorDBs (#828)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This is the first part: - delete other kinds of memory banks (keyvalue, keyword, graph) for now; we will introduce a keyvalue store API as part of this design but not use it in the RAG tool yet. - renaming of the APIs |