# What does this PR do?
The Nvidia distribution docs had some broken links when viewing the
rendered docs site, where the deep links they were attempting into our
code on GitHub weren't actually getting users to the intended
destination.
This updates those links to use the `{repopath}` helper we use elsewhere
to generate valid deep links into the Llama Stack repository.
## Test Plan
I generated the site locally after this change and ensured the links now
resolve to their intended destination.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR contains two sets of notebooks that serve as reference material
for developers getting started with Llama Stack using the NVIDIA
Provider. Developers should be able to execute these notebooks
end-to-end, pointing to their NeMo Microservices deployment.
1. `beginner_e2e/`: Notebook that walks through a beginner end-to-end
workflow that covers creating datasets, running inference, customizing
and evaluating models, and running safety checks.
2. `tool_calling/`: Notebook that is ported over from the [Data Flywheel
& Tool Calling
notebook](https://github.com/NVIDIA/GenerativeAIExamples/tree/main/nemo/data-flywheel)
that is referenced in the NeMo Microservices docs. I updated the
notebook to use the Llama Stack client wherever possible, and added
relevant instructions.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
- Both notebook folders contain READMEs with pre-requisites. To manually
test these notebooks, you'll need to have a deployment of the NeMo
Microservices Platform and update the `config.py` file with your
deployment's information.
- I've run through these notebooks manually end-to-end to verify each
step works.
[//]: # (## Documentation)
---------
Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
…path
# What does this PR do?
Closes#1847
Changes:
- llama_stack/apis/common/responses.py: adds optional `url` field to
PaginatedResponse
- llama_stack/distribution/server/server.py: automatically populate the
URL field with route path
## Test Plan
- Built and ran llama stack server using the following cmds:
```bash
export INFERENCE_MODEL=llama3.1:8b
llama stack build --run --template ollama --image-type container
llama stack run llama_stack/templates/ollama/run.yaml
```
- Ran `curl` to test if we are seeing the `url` param in response:
```bash
curl -X 'GET' \
'http://localhost:8321/v1/agents' \
-H 'accept: application/json'
```
- Expected and Received Output:
`{"data":[],"has_more":false,"url":"/v1/agents"}`
---------
Co-authored-by: Rohan Awhad <rawhad@redhat.com>
For code completion apps need "fill in the middle" capabilities.
Added option of `suffix` to `openai_completion` to enable this.
Updated ollama provider to showcase the same.
### Test Plan
```
pytest -sv --stack-config="inference=ollama" tests/integration/inference/test_openai_completion.py --text-model qwen2.5-coder:1.5b -k test_openai_completion_non_streaming_suffix
```
### OpenAI Sample script
```
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8321/v1/openai/v1")
response = client.completions.create(
model="qwen2.5-coder:1.5b",
prompt="The capital of ",
suffix="is Paris.",
max_tokens=10,
)
print(response.choices[0].text)
```
### Output
```
France is ____.
To answer this question, we
```
# What does this PR do?
Add support for hybrid search mode in SQLite-vec provider, which
combines
keyword and vector search for better results. The implementation:
- Adds hybrid search mode as a new option alongside vector and keyword
search
- Implements query_hybrid method in SQLiteVecIndex that:
- First performs keyword search to get candidate matches
- Then applies vector similarity search on those candidates
- Updates documentation to reflect the new search mode
This change improves search quality by leveraging both semantic
similarity
and keyword matching, while maintaining backward compatibility with
existing
vector and keyword search modes.
## Test Plan
```
pytest tests/unit/providers/vector_io/test_sqlite_vec.py -v -s --tb=short
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:217: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================================== test session starts ===============================================================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.6-arm64-arm-64bit', 'Packages': {'pytest': '8.3.5', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'asyncio': '0.26.0', 'nbval': '0.11.0', 'cov': '6.1.1'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, anyio-4.8.0, asyncio-0.26.0, nbval-0.11.0, cov-6.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 10 items
tests/unit/providers/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search_k_greater_than_results PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_no_keyword_matches PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_score_threshold PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_different_embedding PASSED
```
---------
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
This is an initial working prototype of wiring up the `file_search`
builtin tool for the Responses API to our existing rag knowledge search
tool.
This is me seeing what I could pull together on top of the bits we
already have merged. This may not be the ideal way to implement this,
and things like how I shuffle the vector store ids from the original
response API tool request to the actual tool execution feel a bit hacky
(grep for `tool_kwargs["vector_db_ids"]` in `_execute_tool_call` to see
what I mean).
## Test Plan
I stubbed in some new tests to exercise this using text and pdf
documents.
Note that this is currently under tests/verification only because it
sometimes flakes with tool calling of the small Llama-3.2-3B model we
run in CI (and that I use as an example below). We'd want to make the
test a bit more robust in some way if we moved this over to
tests/integration and ran it in CI.
### OpenAI SaaS (to verify test correctness)
```
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=https://api.openai.com/v1 \
--model=gpt-4o
```
### Fireworks with faiss vector store
```
llama stack run llama_stack/templates/fireworks/run.yaml
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.3-70B-Instruct
```
### Ollama with faiss vector store
This sometimes flakes on Ollama because the quantized small model
doesn't always choose to call the tool to answer the user's question.
But, it often works.
```
ollama run llama3.2:3b
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
--image-type venv \
--env OLLAMA_URL="http://0.0.0.0:11434"
pytest -sv tests/verifications/openai_api/test_responses.py \
-k'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.2-3B-Instruct
```
### OpenAI provider with sqlite-vec vector store
```
llama stack run ./llama_stack/templates/starter/run.yaml --image-type venv
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=openai/gpt-4o-mini
```
### Ensure existing vector store integration tests still pass
```
ollama run llama3.2:3b
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
--image-type venv \
--env OLLAMA_URL="http://0.0.0.0:11434"
LLAMA_STACK_CONFIG=http://localhost:8321 \
pytest -sv tests/integration/vector_io \
--text-model "meta-llama/Llama-3.2-3B-Instruct" \
--embedding-model=all-MiniLM-L6-v2
```
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Though the jwks endpoint does not usually require authentication, it
does in a kubernetes cluster. While the cluster can be configured to
allow anonymous access to that endpoint, this avoids the need to do so.
Updated the `search` functionality return response to match openai.
## Test Plan
```
pytest -sv --stack-config=http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
Extracts common OpenAI vector-store code into its own mixin so that all
providers can share the same core logic.
This also makes it easy for Llama Stack to support both vector-stores
and Llama Stack APIs in the interim so that both share the same
underlying vector-dbs.
Each provider contains storage specific logic to `create / edit / delete
/ list` vector dbs while the plumbing logic is standardized in the
common code.
Ensured that this works well with both faiss and sqllite-vec.
### Test Plan
```
llama stack run starter
pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
Adding OpenAI compat `/v1/vector-store` apis.
This PR implements the `faiss` provider with followup PRs coming up for
other providers.
Added routes to create, update, delete, list vector stores.
Also added route to search a vector store
Inserting into vector stores is missing and will be a follow up diff.
### Test Plan
- Added new integration test for testing the faiss provider
```
pytest -sv --stack-config http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
# What does this PR do?
This adds some initial content documenting our OpenAI compatible APIs
- Responses, Chat Completions, Completions, and Models - along with
instructions on how to use them via OpenAI or Llama Stack clients and
some simple examples for each.
It's not a lot of content, but it's a start so that users have some idea
how to get going as we continue to work on these APIs.
## Test Plan
I generated the docs site locally and verified things render properly. I
also ran each code example to ensure it works as expected. And, I asked
my AI code assistant to do a quick spell-check and review of the docs
and it didn't flag any obvious errors.
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Francisco Arceo <farceo@redhat.com>
# What does this PR do?
This adds the missing `text` parameter to the Responses API that is how
users control structured outputs. All we do with that parameter is map
it to the corresponding chat completion response_format.
## Test Plan
The new unit tests exercise the various permutations allowed for this
property, while a couple of new verification tests actually use it for
real to verify the model outputs are following the format as expected.
Unit tests:
`python -m pytest -s -v
tests/unit/providers/agents/meta_reference/test_openai_responses.py`
Verification tests:
```
llama stack run llama_stack/templates/together/run.yaml
pytest -s -vv 'tests/verifications/openai_api/test_responses.py' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Note that the verification tests can only be run with a real Llama Stack
server (as opposed to using the library client via
`--provider=stack:together`) because the Llama Stack python client is
not yet updated to accept this text field.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
TSIA
Added Files provider to the fireworks template. Might want to add to all
templates as a follow-up.
## Test Plan
llama-stack pytest tests/unit/files/test_files.py
llama-stack llama stack build --template fireworks --image-type conda
--run
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -s -v
tests/integration/files/
I think the implementation needs more simplification. Spent way too much
time trying to get the tests pass with models not co-operating :(
Finally had to switch claude-sonnet to get things to pass reliably.
### Test Plan
```
export TAVILY_SEARCH_API_KEY=...
export OPENAI_API_KEY=...
uv run pytest -p no:warnings \
-s -v tests/verifications/openai_api/test_responses.py \
--provider=stack:starter \
--model openai/gpt-4o
```
This Kubernetes cluster has:
- vLLM for serving an inference model
- vLLM for serving a safety model
- Postgres DB (for metadata and other state for the Llama Stack distro)
- Chroma DB for Vector IO (memory)
Perhaps most importantly, this was me trying to learn Kubernetes for the
first time.
## Test Plan
Run `sh apply.sh` against an EKS cluster, then after `kubectl
port-forward service/llama-stack-service 8321:8321` and after many
attempts, we have finally:
<img width="1589" alt="image"
src="https://github.com/user-attachments/assets/c69f242d-6aaa-4def-9f7c-172113b8bfc1"
/>
<img width="1978" alt="image"
src="https://github.com/user-attachments/assets/cf678404-f551-4fa5-9077-bebe3e8e8ae8"
/>
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
Removes the ability to run llama stack container images through the
llama stack CLI
Closes#2110
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Run:
```
llama stack run /path/to/run.yaml --image-type container
```
Expected outcome:
```
llama stack run: error: argument --image-type: invalid choice: 'container' (choose from 'conda', 'venv')
```
[//]: # (## Documentation)
# What does this PR do?
Adds a new endpoint that is compatible with OpenAI for embeddings api.
`/openai/v1/embeddings`
Added providers for OpenAI, LiteLLM and SentenceTransformer.
## Test Plan
```
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/inference/test_openai_embeddings.py --embedding-model all-MiniLM-L6-v2,text-embedding-3-small,gemini/text-embedding-004
```
# What does this PR do?
Followup of https://github.com/meta-llama/llama-stack/pull/2287. We must
use `--group` when running commands with uv.
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
the providers list is missing post_training. Add that column and
`HuggingFace`, `TorchTune`, and `NVIDIA NEMO` as supported providers.
also point to these providers in docs/source/providers/index.md, and
describe basic functionality
There are other missing provider types here as well, but starting with
this
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
This adds initial streaming support to the Responses API.
This PR makes sure that the _first_ inference call made to chat
completions streams out.
There's more to be done:
- tool call output tokens need to stream out when possible
- we need to loop through multiple rounds of inference and they all need
to stream out.
## Test Plan
Added a test. Executed as:
```
FIREWORKS_API_KEY=... \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--provider=stack:fireworks --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Then, started a llama stack fireworks distro and tested against it like
this:
```
OPENAI_API_KEY=blah \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--base-url http://localhost:8321/v1/openai/v1 \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
When registering a MCP endpoint, we cannot list tools (like we used to)
since the MCP endpoint may be behind an auth wall. Registration can
happen much sooner (via run.yaml).
Instead, we do listing only when the _user_ actually calls listing.
Furthermore, we cache the list in-memory in the server. Currently, the
cache is not invalidated -- we may want to periodically re-list for MCP
servers. Note that they must call `list_tools` before calling
`invoke_tool` -- we use this critically.
This will enable us to list MCP servers in run.yaml
## Test Plan
Existing tests, updated tests accordingly.
Getting this error from pypi of late
```
'python-requests/2.32.3 User-Agents are currently blocked from accessing JSON release resources. A cluster is apparently crawling all project/release resources resulting in excess cache misses. Please contact admin@pypi.org if you have information regarding what this software may be.'
```
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.
## Test Plan
Added integration/unit tests.
# What does this PR do?
Includes SambaNova safety adaptor to use the sambanova cloud served
Meta-Llama-Guard-3-8B
minor updates in sambanova docs
## Test Plan
pytest -s -v tests/integration/safety/test_safety.py
--stack-config=sambanova --safety-shield=sambanova/Meta-Llama-Guard-3-8B
# What does this PR do?
This PR introduces support for keyword based FTS5 search with BM25
relevance scoring. It makes changes to the existing EmbeddingIndex base
class in order to support a search_mode and query_str parameter, that
can be used for keyword based search implementations.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
run
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
Output:
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
====================================================== test session starts =======================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0
asyncio: mode=auto, asyncio_default_fixture_loop_scope=None
collected 7 items
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```
For reference, with the implementation, the fts table looks like below:
```
Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0
Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0
Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0
Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0
Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0
Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0
Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0
Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0
Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0
Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0
Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1
Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1
Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1
Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1
Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1
```
Query results:
Result 1: Sentence 5 from document 0
Result 2: Sentence 5 from document 1
Result 3: Sentence 5 from document 2
[//]: # (## Documentation)
---------
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
* remove requirements.txt to use pyproject.toml as the source of truth
* update relevant docs
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The cache_ttl config value is not in fact tied to the lifetime of any of
the keys, it represents the time interval between for our key cache
refresher.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Kubernetes since 1.20 exposes a JWKS endpoint that we can use with our
recent oauth2 recent implementation.
The CI test has been kept intact for validation.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
feat(quota): add server‑side per‑client request quotas (requires auth)
Unrestricted usage can lead to runaway costs and fragmented client-side
workarounds. This commit introduces a native quota mechanism to the
server, giving operators a unified, centrally managed throttle for
per-client requests—without needing extra proxies or custom client
logic. This helps contain cloud-compute expenses, enables fine-grained
usage control, and simplifies deployment and monitoring of Llama Stack
services. Quotas are fully opt-in and have no effect unless explicitly
configured.
Notice that Quotas are fully opt-in and require authentication to be
enabled. The 'sqlite' is the only supported quota `type` at this time,
any other `type` will be rejected. And the only supported `period` is
'day'.
Highlights:
- Adds `QuotaMiddleware` to enforce per-client request quotas:
- Uses `Authorization: Bearer <client_id>` (from
AuthenticationMiddleware)
- Tracks usage via a SQLite-based KV store
- Returns 429 when the quota is exceeded
- Extends `ServerConfig` with a `quota` section (type + config)
- Enforces strict coupling: quotas require authentication or the server
will fail to start
Behavior changes:
- Quotas are disabled by default unless explicitly configured
- SQLite defaults to `./quotas.db` if no DB path is set
- The server requires authentication when quotas are enabled
To enable per-client request quotas in `run.yaml`, add:
```
server:
port: 8321
auth:
provider_type: "custom"
config:
endpoint: "https://auth.example.com/validate"
quota:
type: sqlite
config:
db_path: ./quotas.db
limit:
max_requests: 1000
period: day
[//]: # (If resolving an issue, uncomment and update the line below)
Closes#2093
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: Wen Liang <wenliang@redhat.com>
Co-authored-by: Wen Liang <wenliang@redhat.com>
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
```
llama stack rm llamastack-test
```
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
#225
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
# What does this PR do?
Add support for "instructions" to the responses API. Instructions
provide a way to swap out system (or developer) messages in new
responses.
## Test Plan
unit tests added
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
This PR introduces APIs to retrieve past chat completion requests, which
will be used in the LS UI.
Our current `Telemetry` is ill-suited for this purpose as it's untyped
so we'd need to filter by obscure attribute names, making it brittle.
Since these APIs are 'provided by stack' and don't need to be
implemented by inference providers, we introduce a new InferenceProvider
class, containing the existing inference protocol, which is implemented
by inference providers.
The APIs are OpenAI-compliant, with an additional `input_messages`
field.
## Test Plan
This PR just adds the API and marks them provided_by_stack. S
tart stack server -> doesn't crash
# What does this PR do?
adds an inline HF SFTTrainer provider. Alongside touchtune -- this is a
super popular option for running training jobs. The config allows a user
to specify some key fields such as a model, chat_template, device, etc
the provider comes with one recipe `finetune_single_device` which works
both with and without LoRA.
any model that is a valid HF identifier can be given and the model will
be pulled.
this has been tested so far with CPU and MPS device types, but should be
compatible with CUDA out of the box
The provider processes the given dataset into the proper format,
establishes the various steps per epoch, steps per save, steps per eval,
sets a sane SFTConfig, and runs n_epochs of training
if checkpoint_dir is none, no model is saved. If there is a checkpoint
dir, a model is saved every `save_steps` and at the end of training.
## Test Plan
re-enabled post_training integration test suite with a singular test
that loads the simpleqa dataset:
https://huggingface.co/datasets/llamastack/simpleqa and a tiny granite
model: https://huggingface.co/ibm-granite/granite-3.3-2b-instruct. The
test now uses the llama stack client and the proper post_training API
runs one step with a batch_size of 1. This test runs on CPU on the
Ubuntu runner so it needs to be a small batch and a single step.
[//]: # (## Documentation)
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
start_stack.sh was using --yaml-config which is deprecated.
a bunch of distro docs also mentioned --yaml-config. Replaces all
instances and logic for --yaml-config with --config
resolves#2189
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
It may not always be desirable to listen on all interfaces, which is the
default. As an example, by listening instead only on a loopback
interface, the server cannot be reached except from within the host it
is run on. This PR makes this configurable, through a CLI option, an env
var or an entry on the config file.
## Test Plan
I ran a server with and without the added CLI argument to verify that
the argument is used if provided, but the default is as it was before if
not.
Signed-off-by: Gordon Sim <gsim@redhat.com>
# What does this PR do?
We added:
* make sure docstrings are present with 'params' and 'returns'
* fail if someone sets 'returns: None'
* fix the failing APIs
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
currently the "default" dir for external providers is
`/etc/llama-stack/providers.d`
This dir is not used anywhere nor created.
Switch to a more friendly `~/.llama/providers.d/`
This allows external providers to actually create this dir and/or
populate it upon installation, `pip` cannot create directories in `etc`.
If a user does not specify a dir, default to this one
see https://github.com/containers/ramalama-stack/issues/36
Signed-off-by: Charlie Doern <cdoern@redhat.com>