mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-04 02:03:44 +00:00
112 commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
98a5047f9d
|
feat(prompts): attach prompts to storage stores in run configs (#3893)
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> This PR is responsible for attaching prompts to storage stores in run configs. It allows to specify prompts as stores in different distributions. The need of this functionality was initiated in #3514 > Note, #3514 is divided on three separate PRs. Current PR is the first of three. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Manual testing and updated CI unit tests Prerequisites: 1. `uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install` 2. `llama stack run starter ` ``` INFO 2025-10-23 15:36:17,387 llama_stack.cli.stack.run:100 cli: Using run configuration: /Users/ianmiller/llama-stack/llama_stack/distributions/starter/run.yaml INFO 2025-10-23 15:36:17,423 llama_stack.cli.stack.run:157 cli: HTTPS enabled with certificates: Key: None Cert: None INFO 2025-10-23 15:36:17,424 llama_stack.cli.stack.run:159 cli: Listening on ['::', '0.0.0.0']:8321 INFO 2025-10-23 15:36:17,749 llama_stack.core.server.server:521 core::server: Run configuration: INFO 2025-10-23 15:36:17,756 llama_stack.core.server.server:524 core::server: apis: - agents - batches - datasetio - eval - files - inference - post_training - safety - scoring - tool_runtime - vector_io image_name: starter providers: agents: - config: persistence: agent_state: backend: kv_default namespace: agents responses: backend: sql_default max_write_queue_size: 10000 num_writers: 4 table_name: responses provider_id: meta-reference provider_type: inline::meta-reference batches: - config: kvstore: backend: kv_default namespace: batches provider_id: reference provider_type: inline::reference datasetio: - config: kvstore: backend: kv_default namespace: datasetio::huggingface provider_id: huggingface provider_type: remote::huggingface - config: kvstore: backend: kv_default namespace: datasetio::localfs provider_id: localfs provider_type: inline::localfs eval: - config: kvstore: backend: kv_default namespace: eval provider_id: meta-reference provider_type: inline::meta-reference files: - config: metadata_store: backend: sql_default table_name: files_metadata storage_dir: /Users/ianmiller/.llama/distributions/starter/files provider_id: meta-reference-files provider_type: inline::localfs inference: - config: api_key: '********' url: https://api.fireworks.ai/inference/v1 provider_id: fireworks provider_type: remote::fireworks - config: api_key: '********' url: https://api.together.xyz/v1 provider_id: together provider_type: remote::together - config: {} provider_id: bedrock provider_type: remote::bedrock - config: api_key: '********' base_url: https://api.openai.com/v1 provider_id: openai provider_type: remote::openai - config: api_key: '********' provider_id: anthropic provider_type: remote::anthropic - config: api_key: '********' provider_id: gemini provider_type: remote::gemini - config: api_key: '********' url: https://api.groq.com provider_id: groq provider_type: remote::groq - config: api_key: '********' url: https://api.sambanova.ai/v1 provider_id: sambanova provider_type: remote::sambanova - config: {} provider_id: sentence-transformers provider_type: inline::sentence-transformers post_training: - config: checkpoint_format: meta provider_id: torchtune-cpu provider_type: inline::torchtune-cpu safety: - config: excluded_categories: [] provider_id: llama-guard provider_type: inline::llama-guard - config: {} provider_id: code-scanner provider_type: inline::code-scanner scoring: - config: {} provider_id: basic provider_type: inline::basic - config: {} provider_id: llm-as-judge provider_type: inline::llm-as-judge - config: openai_api_key: '********' provider_id: braintrust provider_type: inline::braintrust tool_runtime: - config: api_key: '********' max_results: 3 provider_id: brave-search provider_type: remote::brave-search - config: api_key: '********' max_results: 3 provider_id: tavily-search provider_type: remote::tavily-search - config: {} provider_id: rag-runtime provider_type: inline::rag-runtime - config: {} provider_id: model-context-protocol provider_type: remote::model-context-protocol vector_io: - config: persistence: backend: kv_default namespace: vector_io::faiss provider_id: faiss provider_type: inline::faiss - config: db_path: /Users/ianmiller/.llama/distributions/starter/sqlite_vec.db persistence: backend: kv_default namespace: vector_io::sqlite_vec provider_id: sqlite-vec provider_type: inline::sqlite-vec registered_resources: benchmarks: [] datasets: [] models: [] scoring_fns: [] shields: [] tool_groups: - provider_id: tavily-search toolgroup_id: builtin::websearch - provider_id: rag-runtime toolgroup_id: builtin::rag vector_stores: [] server: port: 8321 storage: backends: kv_default: db_path: /Users/ianmiller/.llama/distributions/starter/kvstore.db type: kv_sqlite sql_default: db_path: /Users/ianmiller/.llama/distributions/starter/sql_store.db type: sql_sqlite stores: conversations: backend: sql_default table_name: openai_conversations inference: backend: sql_default max_write_queue_size: 10000 num_writers: 4 table_name: inference_store metadata: backend: kv_default namespace: registry prompts: backend: kv_default namespace: prompts telemetry: enabled: true vector_stores: default_embedding_model: model_id: nomic-ai/nomic-embed-text-v1.5 provider_id: sentence-transformers default_provider_id: faiss version: 2 INFO 2025-10-23 15:36:20,032 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue disabled for SQLite to avoid concurrency issues WARNING 2025-10-23 15:36:20,422 llama_stack.providers.inline.telemetry.meta_reference.telemetry:84 telemetry: OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry INFO 2025-10-23 15:36:22,379 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils: OpenAIInferenceAdapter.list_provider_model_ids() returned 105 models INFO 2025-10-23 15:36:22,703 uvicorn.error:84 uncategorized: Started server process [17328] INFO 2025-10-23 15:36:22,704 uvicorn.error:48 uncategorized: Waiting for application startup. INFO 2025-10-23 15:36:22,706 llama_stack.core.server.server:179 core::server: Starting up Llama Stack server (version: 0.3.0) INFO 2025-10-23 15:36:22,707 llama_stack.core.stack:470 core: starting registry refresh task INFO 2025-10-23 15:36:22,708 uvicorn.error:62 uncategorized: Application startup complete. INFO 2025-10-23 15:36:22,708 uvicorn.error:216 uncategorized: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) ``` As you can see, prompts are attached to stores in config Testing: 1. Create prompt: ``` curl -X POST http://localhost:8321/v1/prompts \ -H "Content-Type: application/json" \ -d '{ "prompt": "Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.", "variables": ["name", "company", "role", "tone"] }' ``` `{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}% ` 2. Get prompt: `curl -X GET http://localhost:8321/v1/prompts/pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f` `{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}% ` 3. Query sqlite KV storage to check created prompt: ``` sqlite> .mode column sqlite> .headers on sqlite> SELECT * FROM kvstore WHERE key LIKE 'prompts:v1:%'; key value expiration ------------------------------------------------------------ ------------------------------------------------------------ ---------- prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e {"prompt_id": "pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab 163f:1 5f6e163f", "prompt": "Hello {{name}}! You are working at {{c ompany}}. Your role is {{role}} at {{company}}. Remember, {{ name}}, to be {{tone}}.", "version": 1, "variables": ["name" , "company", "role", "tone"], "is_default": false} prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e 1 163f:default sqlite> ``` |
||
|
|
8265d4efc8
|
chore(telemetry): code cleanup (#3897)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 14s
UI Tests / ui-tests (22) (push) Successful in 43s
Pre-commit / pre-commit (push) Successful in 1m35s
# What does this PR do? Clean up telemetry code since the telemetry API has been remove. - moved telemetry files out of providers to core - removed from Api ## Test Plan ❯ OTEL_SERVICE_NAME=llama_stack OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318 uv run llama stack run starter ❯ curl http://localhost:8321/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "openai/gpt-4o-mini", "messages": [ { "role": "user", "content": "Hello!" } ] }' -> verify traces in Grafana CI |
||
|
|
9916cb3b17
|
chore: support default model in moderations API (#3890)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Test External API and Providers / test-external (venv) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
UI Tests / ui-tests (22) (push) Successful in 41s
Pre-commit / pre-commit (push) Successful in 1m33s
# What does this PR do? https://platform.openai.com/docs/api-reference/moderations supports optional model parameter. This PR adds support for using moderations API with model=None if a default shield id is provided via safety config. ## Test Plan added tests manual test: ``` > SAFETY_MODEL='together/meta-llama/Llama-Guard-4-12B' uv run llama stack run starter > curl http://localhost:8321/v1/moderations \ -H "Content-Type: application/json" \ -d '{ "input": [ "hello" ] }' ``` |
||
|
|
0e57233a0a
|
chore(misc): update datasets, benchmarks to use alpha, beta prefixes (#3891)
This will be landed together with https://github.com/llamastack/llama-stack-client-python/pull/282 (hence CI will be red on this one.) I have verified locally that tests pass with the updated version of the client-sdk. |
||
|
|
f8eaa40580
|
chore: better error messages for moderations API (#3887)
# What does this PR do? ## Test Plan ``` ~/projects/lst3 remotes/origin/HEAD* .venv ❯ curl http://localhost:8321/v1/moderations \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-4o-mini", "input": [ "hello" ] }' {"detail":"Invalid value: No shield associated with provider_resource id gpt-4o-mini: choose from ['together/meta-llama/Llama-Guard-4-12B']"} ``` |
||
|
|
8885cea8d7
|
fix(conversations)!: update Conversations API definitions (was: bump openai from 1.107.0 to 2.5.0) (#3847)
Bumps [openai](https://github.com/openai/openai-python) from 1.107.0 to 2.5.0. <details> <summary>Release notes</summary> <p><em>Sourced from <a href="https://github.com/openai/openai-python/releases">openai's releases</a>.</em></p> <blockquote> <h2>v2.5.0</h2> <h2>2.5.0 (2025-10-17)</h2> <p>Full Changelog: <a href="https://github.com/openai/openai-python/compare/v2.4.0...v2.5.0">v2.4.0...v2.5.0</a></p> <h3>Features</h3> <ul> <li><strong>api:</strong> api update (<a href=" |
||
|
|
bb1ebb3c6b
|
feat: Add rerank models and rerank API change (#3831)
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> - Extend the model type to include rerank models. - Implement `rerank()` method in inference router. - Add `rerank_model_list` to `OpenAIMixin` to enable providers to register and identify rerank models - Update documentation. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> ``` pytest tests/unit/providers/utils/inference/test_openai_mixin.py ``` |
||
|
|
bd3c473208
|
revert: "chore(cleanup)!: remove tool_runtime.rag_tool" (#3877)
Reverts llamastack/llama-stack#3871 This PR broke RAG (even from Responses -- there _is_ a dependency) |
||
|
|
71ead88bce
|
fix(logging): move module-level initialization to explicit setup calls (#3874)
- Moved environment variable parsing and `setup_logging()` call from module level to proper initialization points - Added explicit `setup_logging()` calls in `server.py::create_app()` and `library_client.py::AsyncLlamaStackAsLibraryClient.__init__()` Module-level side effects are bad practice and can cause issues with import order, testing, and circular dependencies. The previous implementation ran logging setup on every import of the log module, which is unpredictable and difficult to control. --------- Co-authored-by: Claude <noreply@anthropic.com> |
||
|
|
0e96279bee
|
chore(cleanup)!: remove tool_runtime.rag_tool (#3871)
Kill the `builtin::rag` tool group completely since it is no longer targeted. We use the Responses implementation for knowledge_search which uses the `openai_vector_stores` pathway. --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> |
||
|
|
122de785c4
|
chore(cleanup)!: kill vector_db references as far as possible (#3864)
There should not be "vector db" anywhere. |
||
|
|
444f6c88f3
|
chore: remove build.py (#3869)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 3s
Test llama stack list-deps / list-deps-from-config (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 20s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 23s
Test llama stack list-deps / list-deps (push) Failing after 18s
UI Tests / ui-tests (22) (push) Successful in 57s
Pre-commit / pre-commit (push) Successful in 1m52s
# What does this PR do? ## Test Plan CI |
||
|
|
94faec7bc5
|
chore(yaml)!: move registered resources to a sub-key (#3861)
**NOTE: this is a backwards incompatible change to the run-configs.** A small QOL update, but this will prove useful when I do a rename for "vector_dbs" to "vector_stores" next. Moves all the `models, shields, ...` keys in run-config under a `registered_resources` sub-key. |
||
|
|
48581bf651
|
chore: Updating how default embedding model is set in stack (#3818)
# What does this PR do?
Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).
New config is simply (default for Starter distro):
```yaml
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
```
## Test Plan
CI and Unit tests.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
|
||
|
|
2c43285e22
|
feat(stores)!: use backend storage references instead of configs (#3697)
**This PR changes configurations in a backward incompatible way.**
Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.
## Key Changes
- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.
## Migration
Before:
```yaml
metadata_store:
type: sqlite
db_path: ~/.llama/distributions/foo/registry.db
inference_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
conversations_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
```
After:
```yaml
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ~/.llama/distributions/foo/kvstore.db
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
stores:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
max_write_queue_size: 10000
num_writers: 4
conversations:
backend: sql_default
table_name: openai_conversations
```
Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
kvstore:
type: sqlite
db_path: ~/.llama/distributions/foo/chroma.db
```
to:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
persistence:
backend: kv_default
namespace: vector_io::chroma_remote
```
Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
|
||
|
|
1f38359d95
|
fix: nested claims mapping in OAuth2 token validation (#3814)
fix: nested claims mapping in OAuth2 token validation
The get_attributes_from_claims function was only checking for top-level
claim keys, causing token validation to fail when using nested claims
like "resource_access.llamastack.roles" (common in Keycloak JWT tokens).
Updated the function to support dot notation for traversing nested claim
structures. Give precedence to dot notation over literal keys with dots
in claims mapping.
Added test coverage.
Closes: #3812
Signed-off-by: Derek Higgins <derekh@redhat.com>
|
||
|
|
b11bcfde11
|
refactor(build): rework CLI commands and build process (1/2) (#2974)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 22s
Test llama stack list-deps / show-single-provider (push) Failing after 53s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 18s
Python Package Build Test / build (3.13) (push) Failing after 24s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 26s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 27s
Unit Tests / unit-tests (3.12) (push) Failing after 26s
Vector IO Integration Tests / test-matrix (push) Failing after 44s
API Conformance Tests / check-schema-compatibility (push) Successful in 52s
Test llama stack list-deps / generate-matrix (push) Successful in 52s
Test Llama Stack Build / build (push) Failing after 29s
Test External API and Providers / test-external (venv) (push) Failing after 53s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1m2s
Unit Tests / unit-tests (3.13) (push) Failing after 1m30s
Test llama stack list-deps / list-deps-from-config (push) Failing after 1m59s
Test llama stack list-deps / list-deps (push) Failing after 1m10s
UI Tests / ui-tests (22) (push) Successful in 2m26s
Pre-commit / pre-commit (push) Successful in 3m8s
# What does this PR do? This PR does a few things outlined in #2878 namely: 1. adds `llama stack list-deps` a command which simply takes the build logic and instead of executing one of the `build_...` scripts, it displays all of the providers' dependencies using the `module` and `uv`. 2. deprecated `llama stack build` in favor of `llama stack list-deps` 3. updates all tests to use `list-deps` alongside `build`. PR 2/2 will migrate `llama stack run`'s default behavior to be `llama stack build --run` and use the new `list-deps` command under the hood before running the server. examples of `llama stack list-deps starter` ``` llama stack list-deps starter --format json { "name": "starter", "description": "Quick start template for running Llama Stack with several popular providers. This distribution is intended for CPU-only environments.", "apis": [ { "api": "inference", "provider": "remote::cerebras" }, { "api": "inference", "provider": "remote::ollama" }, { "api": "inference", "provider": "remote::vllm" }, { "api": "inference", "provider": "remote::tgi" }, { "api": "inference", "provider": "remote::fireworks" }, { "api": "inference", "provider": "remote::together" }, { "api": "inference", "provider": "remote::bedrock" }, { "api": "inference", "provider": "remote::nvidia" }, { "api": "inference", "provider": "remote::openai" }, { "api": "inference", "provider": "remote::anthropic" }, { "api": "inference", "provider": "remote::gemini" }, { "api": "inference", "provider": "remote::vertexai" }, { "api": "inference", "provider": "remote::groq" }, { "api": "inference", "provider": "remote::sambanova" }, { "api": "inference", "provider": "remote::azure" }, { "api": "inference", "provider": "inline::sentence-transformers" }, { "api": "vector_io", "provider": "inline::faiss" }, { "api": "vector_io", "provider": "inline::sqlite-vec" }, { "api": "vector_io", "provider": "inline::milvus" }, { "api": "vector_io", "provider": "remote::chromadb" }, { "api": "vector_io", "provider": "remote::pgvector" }, { "api": "files", "provider": "inline::localfs" }, { "api": "safety", "provider": "inline::llama-guard" }, { "api": "safety", "provider": "inline::code-scanner" }, { "api": "agents", "provider": "inline::meta-reference" }, { "api": "telemetry", "provider": "inline::meta-reference" }, { "api": "post_training", "provider": "inline::torchtune-cpu" }, { "api": "eval", "provider": "inline::meta-reference" }, { "api": "datasetio", "provider": "remote::huggingface" }, { "api": "datasetio", "provider": "inline::localfs" }, { "api": "scoring", "provider": "inline::basic" }, { "api": "scoring", "provider": "inline::llm-as-judge" }, { "api": "scoring", "provider": "inline::braintrust" }, { "api": "tool_runtime", "provider": "remote::brave-search" }, { "api": "tool_runtime", "provider": "remote::tavily-search" }, { "api": "tool_runtime", "provider": "inline::rag-runtime" }, { "api": "tool_runtime", "provider": "remote::model-context-protocol" }, { "api": "batches", "provider": "inline::reference" } ], "pip_dependencies": [ "pandas", "opentelemetry-exporter-otlp-proto-http", "matplotlib", "opentelemetry-sdk", "sentence-transformers", "datasets", "pymilvus[milvus-lite]>=2.4.10", "codeshield", "scipy", "torchvision", "tree_sitter", "h11>=0.16.0", "aiohttp", "pymongo", "tqdm", "pythainlp", "pillow", "torch", "emoji", "grpcio>=1.67.1,<1.71.0", "fireworks-ai", "langdetect", "psycopg2-binary", "asyncpg", "redis", "together", "torchao>=0.12.0", "openai", "sentencepiece", "aiosqlite", "google-cloud-aiplatform", "faiss-cpu", "numpy", "sqlite-vec", "nltk", "scikit-learn", "mcp>=1.8.1", "transformers", "boto3", "huggingface_hub", "ollama", "autoevals", "sqlalchemy[asyncio]", "torchtune>=0.5.0", "chromadb-client", "pypdf", "requests", "anthropic", "chardet", "aiosqlite", "fastapi", "fire", "httpx", "uvicorn", "opentelemetry-sdk", "opentelemetry-exporter-otlp-proto-http" ] } ``` <img width="1500" height="420" alt="Screenshot 2025-10-16 at 5 53 03 PM" src="https://github.com/user-attachments/assets/765929fb-93e2-44d7-9c3d-8918b70fc721" /> --------- Signed-off-by: Charlie Doern <cdoern@redhat.com> |
||
|
|
cd152f4240
|
feat(ci): add support for docker:distro in tests (#3832)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / generate-matrix (push) Successful in 6s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
Test Llama Stack Build / build-single-provider (push) Failing after 9s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 10s
Vector IO Integration Tests / test-matrix (push) Failing after 14s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Test External API and Providers / test-external (venv) (push) Failing after 12s
API Conformance Tests / check-schema-compatibility (push) Successful in 19s
Test Llama Stack Build / build (push) Failing after 7s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 26s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 25s
Python Package Build Test / build (3.12) (push) Failing after 33s
UI Tests / ui-tests (22) (push) Successful in 1m26s
Pre-commit / pre-commit (push) Successful in 2m18s
Also a critical bug fix so test recordings can be found inside docker |
||
|
|
b3099d40e2
|
fix(telemetry): remove dependency on old telemetry config (#3830)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / generate-matrix (push) Successful in 8s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 10s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 12s
Test Llama Stack Build / build-single-provider (push) Failing after 11s
Python Package Build Test / build (3.12) (push) Failing after 10s
Test External API and Providers / test-external (venv) (push) Failing after 11s
Python Package Build Test / build (3.13) (push) Failing after 13s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Test Llama Stack Build / build (push) Failing after 12s
Unit Tests / unit-tests (3.12) (push) Failing after 21s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 57s
Vector IO Integration Tests / test-matrix (push) Failing after 1m13s
API Conformance Tests / check-schema-compatibility (push) Successful in 1m22s
UI Tests / ui-tests (22) (push) Successful in 1m33s
Pre-commit / pre-commit (push) Successful in 1m55s
# What does this PR do? old telemetry config was removed in #3815 ## Test Plan ❯ OTEL_SERVICE_NAME=aloha OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318 uv run llama stack run starter <img width="1888" height="605" alt="image" src="https://github.com/user-attachments/assets/dd5cc9f0-213a-4dc6-9385-f61a3a13b4c3" /> |
||
|
|
07ff15d917
|
chore: distrogen enables telemetry by default (#3828)
# What does this PR do? leftover from #3815 ## Test Plan CI --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3828). * #3830 * __->__ #3828 |
||
|
|
f22aaef42f
|
chore!: remove telemetry API usage (#3815)
# What does this PR do? remove telemetry as a providable API from the codebase. This includes removing it from generated distributions but also the provider registry, the router, etc since `setup_logger` is tied pretty strictly to `Api.telemetry` being in impls we still need an "instantiated provider" in our implementations. However it should not be auto-routed or provided. So in validate_and_prepare_providers (called from resolve_impls) I made it so that if run_config.telemetry.enabled, we set up the meta-reference "provider" internally to be used so that log_event will work when called. This is the neatest way I think we can remove telemetry from the provider configs but also not need to rip apart the whole "telemetry is a provider" logic just yet, but we can do it internally later without disrupting users. so telemetry is removed from the registry such that if a user puts `telemetry:` as an API in their build/run config it will err out, but can still be used by us internally as we go through this transition. relates to #3806 Signed-off-by: Charlie Doern <cdoern@redhat.com> |
||
|
|
f70aa99c97
|
fix(models)!: always prefix models with provider_id when registering (#3822)
**!!BREAKING CHANGE!!** The lookup is also straightforward -- we always look for this identifier and don't try to find a match for something without the provider_id prefix. Note that, this ideally means we need to update the `register_model()` API also (we should kill "identifier" from there) but I am not doing that as part of this PR. ## Test Plan Existing unit tests |
||
|
|
6ba9db3929
|
chore!: BREAKING CHANGE: remove sqlite from telemetry config (#3808)
# What does this PR do? - Removed sqlite sink from telemetry config. - Removed related code - Updated doc related to telemetry ## Test Plan CI |
||
|
|
bc8b377a7c
|
fix(vector-io): handle missing document_id in insert_chunks (#3521)
Fixed KeyError when chunks don't have document_id in metadata or chunk_metadata. Updated logging to safely extract document_id using getattr and RAG memory to handle different document_id locations. Added test for missing document_id scenarios. Fixes issue #3494 where /v1/vector-io/insert would crash with KeyError. Fixed KeyError when chunks don't have document_id in metadata or chunk_metadata. Updated logging to safely extract document_id using getattr and RAG memory to handle different document_id locations. Added test for missing document_id scenarios. # What does this PR do? Fixes a KeyError crash in `/v1/vector-io/insert` when chunks are missing `document_id` fields. The API was failing even though `document_id` is optional according to the schema. Closes #3494 ## Test Plan **Before fix:** - POST to `/v1/vector-io/insert` with chunks → 500 KeyError - Happened regardless of where `document_id` was placed **After fix:** - Same request works fine → 200 OK - Tested with Postman using FAISS backend - Added unit test covering missing `document_id` scenarios |
||
|
|
e9b4278a51
|
feat(responses)!: improve responses + conversations implementations (#3810)
This PR updates the Conversation item related types and improves a couple critical parts of the implemenation: - it creates a streaming output item for the final assistant message output by the model. until now we only added content parts and included that message in the final response. - rewrites the conversation update code completely to account for items other than messages (tool calls, outputs, etc.) ## Test Plan Used the test script from https://github.com/llamastack/llama-stack-client-python/pull/281 for this ``` TEST_API_BASE_URL=http://localhost:8321/v1 \ pytest tests/integration/test_agent_turn_step_events.py::test_client_side_function_tool -xvs ``` |
||
|
|
ef4bc70bbe
|
feat: Enable setting a default embedding model in the stack (#3803)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s
# What does this PR do? Enables automatic embedding model detection for vector stores and by using a `default_configured` boolean that can be defined in the `run.yaml`. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan - Unit tests - Integration tests - Simple example below: Spin up the stack: ```bash uv run llama stack build --distro starter --image-type venv --run ``` Then test with OpenAI's client: ```python from openai import OpenAI client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none") vs = client.vector_stores.create() ``` Previously you needed: ```python vs = client.vector_stores.create( extra_body={ "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", "embedding_dimension": 384, } ) ``` The `extra_body` is now unnecessary. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> |
||
|
|
1136daf310
|
fix: replace python-jose with PyJWT for JWT handling (#3756)
# What does this PR do? This commit migrates the authentication system from python-jose to PyJWT to eliminate the dependency on the archived rsa package. The migration includes: - Refactored OAuth2TokenAuthProvider to use PyJWT's PyJWKClient for clean JWKS handling - Removed manual JWKS fetching, caching and key extraction logic in favor of PyJWT's built-in functionality The new implementation is cleaner, more maintainable, and follows PyJWT best practices while maintaining full backward compatibility. ## Test Plan Unit tests. Auth CI. --------- Signed-off-by: Sébastien Han <seb@redhat.com> |
||
|
|
968c364a3e
|
chore: Auto-detect Provider ID when only 1 Vector Store Provider avai… (#3802)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 8s
API Conformance Tests / check-schema-compatibility (push) Successful in 18s
UI Tests / ui-tests (22) (push) Successful in 29s
Pre-commit / pre-commit (push) Successful in 1m24s
# What does this PR do?
2 main changes:
1. Remove `provider_id` requirement in call to vector stores and
2. Removes "register first embedding model" logic
- Now forces embedding model id as required on Vector Store creation
Simplifies the UX for OpenAI to:
```python
vs = client.vector_stores.create(
name="my_citations_db",
extra_body={
"embedding_model": "ollama/nomic-embed-text:latest",
}
)
```
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
|
||
|
|
ecc8a554d2
|
feat(api)!: support extra_body to embeddings and vector_stores APIs (#3794)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 1s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m23s
Applies the same pattern from https://github.com/llamastack/llama-stack/pull/3777 to embeddings and vector_stores.create() endpoints. This should _not_ be a breaking change since (a) our tests were already using the `extra_body` parameter when passing in to the backend (b) but the backend probably wasn't extracting the parameters correctly. This PR will fix that. Updated APIs: `openai_embeddings(), openai_create_vector_store(), openai_create_vector_store_file_batch()` |
||
|
|
e6378872c7 | fix(misc): pre-commit fix for server.py | ||
|
|
f365961731 | fix(tests): handle TEST_CONTEXT not being set | ||
|
|
a165b8b5bb
|
chore!: BREAKING CHANGE removing VectorDB APIs (#3774)
# What does this PR do? Removes VectorDBs from API surface and our tests. Moves tests to Vector Stores. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> |
||
|
|
06e4cd8e02
|
feat(api)!: BREAKING CHANGE: support passing extra_body through to providers (#3777)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 9s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 38s
Pre-commit / pre-commit (push) Successful in 1m27s
# What does this PR do? Allows passing through extra_body parameters to inference providers. With this, we removed the 2 vllm-specific parameters from completions API into `extra_body`. Before/After <img width="1883" height="324" alt="image" src="https://github.com/user-attachments/assets/acb27c08-c748-46c9-b1da-0de64e9908a1" /> closes #2720 ## Test Plan CI and added new test ``` ❯ uv run pytest -s -v tests/integration/ --stack-config=server:starter --inference-mode=record -k 'not( builtin_tool or safety_with_image or code_interpreter or test_rag ) and test_openai_completion_guided_choice' --setup=vllm --suite=base --color=yes Uninstalled 3 packages in 125ms Installed 3 packages in 19ms INFO 2025-10-10 14:29:54,317 tests.integration.conftest:118 tests: Applying setup 'vllm' for suite base INFO 2025-10-10 14:29:54,331 tests.integration.conftest:47 tests: Test stack config type: server (stack_config=server:starter) ============================================================================================================== test session starts ============================================================================================================== platform darwin -- Python 3.12.11, pytest-8.4.2, pluggy-1.6.0 -- /Users/erichuang/projects/llama-stack-1/.venv/bin/python cachedir: .pytest_cache metadata: {'Python': '3.12.11', 'Platform': 'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.2', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0'}} rootdir: /Users/erichuang/projects/llama-stack-1 configfile: pyproject.toml plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0 asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function collected 285 items / 284 deselected / 1 selected tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] instantiating llama_stack_client Starting llama stack server with config 'starter' on port 8321... Waiting for server at http://localhost:8321... (0.0s elapsed) Waiting for server at http://localhost:8321... (0.5s elapsed) Waiting for server at http://localhost:8321... (5.1s elapsed) Waiting for server at http://localhost:8321... (5.6s elapsed) Waiting for server at http://localhost:8321... (10.1s elapsed) Waiting for server at http://localhost:8321... (10.6s elapsed) Server is ready at http://localhost:8321 llama_stack_client instantiated in 11.773s PASSEDTerminating llama stack server process... Terminating process 98444 and its group... Server process and children terminated gracefully ============================================================================================================= slowest 10 durations ============================================================================================================== 11.88s setup tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] 3.02s call tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] 0.01s teardown tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] ================================================================================================ 1 passed, 284 deselected, 3 warnings in 16.21s ================================================================================================= ``` |
||
|
|
80d58ab519
|
chore: refactor (chat)completions endpoints to use shared params struct (#3761)
# What does this PR do? Converts openai(_chat)_completions params to pydantic BaseModel to reduce code duplication across all providers. ## Test Plan CI --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3761). * #3777 * __->__ #3761 |
||
|
|
6954fe2274
|
fix(auth): allow unauthenticated access to health and version endpoints (#3736)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 1s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 1s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test Llama Stack Build / build (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
UI Tests / ui-tests (22) (push) Successful in 37s
Pre-commit / pre-commit (push) Successful in 2m1s
The AuthenticationMiddleware was blocking all requests without an Authorization header, including health and version endpoints that are needed by monitoring tools, load balancers, and Kubernetes probes. This commit allows endpoints ending in /health or /version to bypass authentication, enabling operational tooling to function properly without requiring credentials. Closes: #3735 Signed-off-by: Derek Higgins <derekh@redhat.com> |
||
|
|
e7d21e1ee3
|
feat: Add support for Conversations in Responses API (#3743)
# What does this PR do? This PR adds support for Conversations in Responses. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan Unit tests Integration tests <Details> <Summary>Manual testing with this script: (click to expand)</Summary> ```python from openai import OpenAI client = OpenAI() client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none") def test_conversation_create(): print("Testing conversation create...") conversation = client.conversations.create( metadata={"topic": "demo"}, items=[ {"type": "message", "role": "user", "content": "Hello!"} ] ) print(f"Created: {conversation}") return conversation def test_conversation_retrieve(conv_id): print(f"Testing conversation retrieve for {conv_id}...") retrieved = client.conversations.retrieve(conv_id) print(f"Retrieved: {retrieved}") return retrieved def test_conversation_update(conv_id): print(f"Testing conversation update for {conv_id}...") updated = client.conversations.update( conv_id, metadata={"topic": "project-x"} ) print(f"Updated: {updated}") return updated def test_conversation_delete(conv_id): print(f"Testing conversation delete for {conv_id}...") deleted = client.conversations.delete(conv_id) print(f"Deleted: {deleted}") return deleted def test_conversation_items_create(conv_id): print(f"Testing conversation items create for {conv_id}...") items = client.conversations.items.create( conv_id, items=[ { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "Hello!"}] }, { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "How are you?"}] } ] ) print(f"Items created: {items}") return items def test_conversation_items_list(conv_id): print(f"Testing conversation items list for {conv_id}...") items = client.conversations.items.list(conv_id, limit=10) print(f"Items list: {items}") return items def test_conversation_item_retrieve(conv_id, item_id): print(f"Testing conversation item retrieve for {conv_id}/{item_id}...") item = client.conversations.items.retrieve(conversation_id=conv_id, item_id=item_id) print(f"Item retrieved: {item}") return item def test_conversation_item_delete(conv_id, item_id): print(f"Testing conversation item delete for {conv_id}/{item_id}...") deleted = client.conversations.items.delete(conversation_id=conv_id, item_id=item_id) print(f"Item deleted: {deleted}") return deleted def test_conversation_responses_create(): print("\nTesting conversation create for a responses example...") conversation = client.conversations.create() print(f"Created: {conversation}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "What are the 5 Ds of dodgeball?"}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") return response, conversation def test_conversations_responses_create_followup( conversation, content="Repeat what you just said but add 'this is my second time saying this'", ): print(f"Using: {conversation.id}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": content}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") conv_items = client.conversations.items.list(conversation.id) print(f"\nRetrieving list of items for conversation {conversation.id}:") print(conv_items.model_dump_json(indent=2)) def test_response_with_fake_conv_id(): fake_conv_id = "conv_zzzzzzzzz5dc81908289d62779d2ac510a2b0b602ef00a44" print(f"Using {fake_conv_id}") try: response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "say hello"}], conversation=fake_conv_id, ) print(f"Created response: {response} for conversation {fake_conv_id}") except Exception as e: print(f"failed to create response for conversation {fake_conv_id} with error {e}") def main(): print("Testing OpenAI Conversations API...") # Create conversation conversation = test_conversation_create() conv_id = conversation.id # Retrieve conversation test_conversation_retrieve(conv_id) # Update conversation test_conversation_update(conv_id) # Create items items = test_conversation_items_create(conv_id) # List items items_list = test_conversation_items_list(conv_id) # Retrieve specific item if items_list.data: item_id = items_list.data[0].id test_conversation_item_retrieve(conv_id, item_id) # Delete item test_conversation_item_delete(conv_id, item_id) # Delete conversation test_conversation_delete(conv_id) response, conversation2 = test_conversation_responses_create() print('\ntesting reseponse retrieval') test_conversation_retrieve(conversation2.id) print('\ntesting responses follow up') test_conversations_responses_create_followup(conversation2) print('\ntesting responses follow up x2!') test_conversations_responses_create_followup( conversation2, content="Repeat what you just said but add 'this is my third time saying this'", ) test_response_with_fake_conv_id() print("All tests completed!") if __name__ == "__main__": main() ``` </Details> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> |
||
|
|
8fe4a216b5
|
fix(inference): propagate 401/403 errors from remote providers (#3762)
## Summary Fixes #2990 Remote provider authentication errors (401/403) were being converted to 500 Internal Server Error, preventing users from understanding why their requests failed. ## The Problem When a request with an invalid API key was sent to a remote provider: - Provider correctly returns 401 with error details - Llama Stack's `translate_exception()` didn't recognize provider SDK exceptions - Fell through to generic 500 error handler - User received: "Internal server error: An unexpected error occurred." ## The Fix Added handler in `translate_exception()` that checks for exceptions with a `status_code` attribute and preserves the original HTTP status code and error message. **Before:** ```json HTTP 500 {"detail": "Internal server error: An unexpected error occurred."} ``` **After:** ```json HTTP 401 {"detail": "Error code: 401 - {'error': {'message': 'Invalid API Key', 'type': 'invalid_request_error', 'code': 'invalid_api_key'}}"} ``` ## Tested With - ✅ groq: 401 "Invalid API Key" - ✅ openai: 401 "Incorrect API key provided" - ✅ together: 401 "Invalid API key provided" - ✅ fireworks: 403 "unauthorized" ## Test Plan **Automated test script:** https://gist.github.com/ashwinb/1199dd7585ffa3f4be67b111cc65f2f3 The test script: 1. Builds separate stacks for each provider 2. Registers models (with validation temporarily disabled for testing) 3. Sends requests with invalid API keys via `x-llamastack-provider-data` header 4. Verifies HTTP status codes are 401/403 (not 500) **Results before fix:** All providers returned 500 **Results after fix:** All providers correctly return 401/403 **Manual verification:** ```bash # 1. Build stack llama stack build --image-type venv --providers inference=remote::groq # 2. Start stack llama stack run # 3. Send request with invalid API key curl http://localhost:8321/v1/chat/completions \ -H "Content-Type: application/json" \ -H 'x-llamastack-provider-data: {"groq_api_key": "invalid-key"}' \ -d '{"model": "groq/llama3-70b-8192", "messages": [{"role": "user", "content": "test"}]}' # Expected: HTTP 401 with provider error message (not 500) ``` ## Impact - Works with all remote providers using OpenAI SDK (groq, openai, together, fireworks, etc.) - Works with any provider SDK that follows the pattern of exceptions with `status_code` attribute - No breaking changes - only affects error responses |
||
|
|
145b2bcf25
|
feat: make object registration idempotent (#3752)
# What does this PR do?
objects (vector dbs, models, scoring functions, etc) have an identifier
and associated object values.
we allow exact duplicate registrations.
we reject registrations when the identifier exists and the associated
object values differ.
note: model are namespaced, i.e. {provider_id}/{identifier}, while other
object types are not
## Test Plan
ci w/ new tests
|
||
|
|
f50ce11a3b
|
feat(tests): make inference_recorder into api_recorder (include tool_invoke) (#3403)
Renames `inference_recorder.py` to `api_recorder.py` and extends it to support recording/replaying tool invocations in addition to inference calls. This allows us to record web-search, etc. tool calls and thereafter apply recordings for `tests/integration/responses` ## Test Plan ``` export OPENAI_API_KEY=... export TAVILY_SEARCH_API_KEY=... ./scripts/integration-tests.sh --stack-config ci-tests \ --suite responses --inference-mode record-if-missing ``` |
||
|
|
4b9ebbf6a2
|
chore: revert "fix: Raising an error message to the user when registering an existing provider." (#3750)
Reverts llamastack/llama-stack#3624 Causing https://github.com/llamastack/llama-stack/issues/3749 |
||
|
|
5d711d4bcb
|
fix: Update watsonx.ai provider to use LiteLLM mixin and list all models (#3674)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Python Package Build Test / build (3.13) (push) Failing after 2s
Python Package Build Test / build (3.12) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 7s
Test Llama Stack Build / generate-matrix (push) Successful in 6s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
UI Tests / ui-tests (22) (push) Successful in 32s
Pre-commit / pre-commit (push) Successful in 1m29s
# What does this PR do? - The watsonx.ai provider now uses the LiteLLM mixin instead of using IBM's library, which does not seem to be working (see #3165 for context). - The watsonx.ai provider now lists all the models available by calling the watsonx.ai server instead of having a hard coded list of known models. (That list gets out of date quickly) - An edge case in [llama_stack/core/routers/inference.py](https://github.com/llamastack/llama-stack/pull/3674/files#diff-a34bc966ed9befd9f13d4883c23705dff49be0ad6211c850438cdda6113f3455) is addressed that was causing my manual tests to fail. - Fixes `b64_encode_openai_embeddings_response` which was trying to enumerate over a dictionary and then reference elements of the dictionary using .field instead of ["field"]. That method is called by the LiteLLM mixin for embedding models, so it is needed to get the watsonx.ai embedding models to work. - A unit test along the lines of the one in #3348 is added. A more comprehensive plan for automatically testing the end-to-end functionality for inference providers would be a good idea, but is out of scope for this PR. - Updates to the watsonx distribution. Some were in response to the switch to LiteLLM (e.g., updating the Python packages needed). Others seem to be things that were already broken that I found along the way (e.g., a reference to a watsonx specific doc template that doesn't seem to exist). Closes #3165 Also it is related to a line-item in #3387 but doesn't really address that goal (because it uses the LiteLLM mixin, not the OpenAI one). I tried the OpenAI one and it doesn't work with watsonx.ai, presumably because the watsonx.ai service is not OpenAI compatible. It works with LiteLLM because LiteLLM has a provider implementation for watsonx.ai. ## Test Plan The test script below goes back and forth between the OpenAI and watsonx providers. The idea is that the OpenAI provider shows how it should work and then the watsonx provider output shows that it is also working with watsonx. Note that the result from the MCP test is not as good (the Llama 3.3 70b model does not choose tools as wisely as gpt-4o), but it is still working and providing a valid response. For more details on setup and the MCP server being used for testing, see [the AI Alliance sample notebook](https://github.com/The-AI-Alliance/llama-stack-examples/blob/main/notebooks/01-responses/) that these examples are drawn from. ```python #!/usr/bin/env python3 import json from llama_stack_client import LlamaStackClient from litellm import completion import http.client def print_response(response): """Print response in a nicely formatted way""" print(f"ID: {response.id}") print(f"Status: {response.status}") print(f"Model: {response.model}") print(f"Created at: {response.created_at}") print(f"Output items: {len(response.output)}") for i, output_item in enumerate(response.output): if len(response.output) > 1: print(f"\n--- Output Item {i+1} ---") print(f"Output type: {output_item.type}") if output_item.type in ("text", "message"): print(f"Response content: {output_item.content[0].text}") elif output_item.type == "file_search_call": print(f" Tool Call ID: {output_item.id}") print(f" Tool Status: {output_item.status}") # 'queries' is a list, so we join it for clean printing print(f" Queries: {', '.join(output_item.queries)}") # Display results if they exist, otherwise note they are empty print(f" Results: {output_item.results if output_item.results else 'None'}") elif output_item.type == "mcp_list_tools": print_mcp_list_tools(output_item) elif output_item.type == "mcp_call": print_mcp_call(output_item) else: print(f"Response content: {output_item.content}") def print_mcp_call(mcp_call): """Print MCP call in a nicely formatted way""" print(f"\n🛠️ MCP Tool Call: {mcp_call.name}") print(f" Server: {mcp_call.server_label}") print(f" ID: {mcp_call.id}") print(f" Arguments: {mcp_call.arguments}") if mcp_call.error: print("Error: {mcp_call.error}") elif mcp_call.output: print("Output:") # Try to format JSON output nicely try: parsed_output = json.loads(mcp_call.output) print(json.dumps(parsed_output, indent=4)) except: # If not valid JSON, print as-is print(f" {mcp_call.output}") else: print(" ⏳ No output yet") def print_mcp_list_tools(mcp_list_tools): """Print MCP list tools in a nicely formatted way""" print(f"\n🔧 MCP Server: {mcp_list_tools.server_label}") print(f" ID: {mcp_list_tools.id}") print(f" Available Tools: {len(mcp_list_tools.tools)}") print("=" * 80) for i, tool in enumerate(mcp_list_tools.tools, 1): print(f"\n{i}. {tool.name}") print(f" Description: {tool.description}") # Parse and display input schema schema = tool.input_schema if schema and 'properties' in schema: properties = schema['properties'] required = schema.get('required', []) print(" Parameters:") for param_name, param_info in properties.items(): param_type = param_info.get('type', 'unknown') param_desc = param_info.get('description', 'No description') required_marker = " (required)" if param_name in required else " (optional)" print(f" • {param_name} ({param_type}){required_marker}") if param_desc: print(f" {param_desc}") if i < len(mcp_list_tools.tools): print("-" * 40) def main(): """Main function to run all the tests""" # Configuration LLAMA_STACK_URL = "http://localhost:8321/" LLAMA_STACK_MODEL_IDS = [ "openai/gpt-3.5-turbo", "openai/gpt-4o", "llama-openai-compat/Llama-3.3-70B-Instruct", "watsonx/meta-llama/llama-3-3-70b-instruct" ] # Using gpt-4o for this demo, but feel free to try one of the others or add more to run.yaml. OPENAI_MODEL_ID = LLAMA_STACK_MODEL_IDS[1] WATSONX_MODEL_ID = LLAMA_STACK_MODEL_IDS[-1] NPS_MCP_URL = "http://localhost:3005/sse/" print("=== Llama Stack Testing Script ===") print(f"Using OpenAI model: {OPENAI_MODEL_ID}") print(f"Using WatsonX model: {WATSONX_MODEL_ID}") print(f"MCP URL: {NPS_MCP_URL}") print() # Initialize client print("Initializing LlamaStackClient...") client = LlamaStackClient(base_url="http://localhost:8321") # Test 1: List models print("\n=== Test 1: List Models ===") try: models = client.models.list() print(f"Found {len(models)} models") except Exception as e: print(f"Error listing models: {e}") raise e # Test 2: Basic chat completion with OpenAI print("\n=== Test 2: Basic Chat Completion (OpenAI) ===") try: chat_completion_response = client.chat.completions.create( model=OPENAI_MODEL_ID, messages=[{"role": "user", "content": "What is the capital of France?"}] ) print("OpenAI Response:") for chunk in chat_completion_response.choices[0].message.content: print(chunk, end="", flush=True) print() except Exception as e: print(f"Error with OpenAI chat completion: {e}") raise e # Test 3: Basic chat completion with WatsonX print("\n=== Test 3: Basic Chat Completion (WatsonX) ===") try: chat_completion_response_wxai = client.chat.completions.create( model=WATSONX_MODEL_ID, messages=[{"role": "user", "content": "What is the capital of France?"}], ) print("WatsonX Response:") for chunk in chat_completion_response_wxai.choices[0].message.content: print(chunk, end="", flush=True) print() except Exception as e: print(f"Error with WatsonX chat completion: {e}") raise e # Test 4: Tool calling with OpenAI print("\n=== Test 4: Tool Calling (OpenAI) ===") tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather for a specific location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g., San Francisco, CA", }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] }, }, "required": ["location"], }, }, } ] messages = [ {"role": "user", "content": "What's the weather like in Boston, MA?"} ] try: print("--- Initial API Call ---") response = client.chat.completions.create( model=OPENAI_MODEL_ID, messages=messages, tools=tools, tool_choice="auto", # "auto" is the default ) print("OpenAI tool calling response received") except Exception as e: print(f"Error with OpenAI tool calling: {e}") raise e # Test 5: Tool calling with WatsonX print("\n=== Test 5: Tool Calling (WatsonX) ===") try: wxai_response = client.chat.completions.create( model=WATSONX_MODEL_ID, messages=messages, tools=tools, tool_choice="auto", # "auto" is the default ) print("WatsonX tool calling response received") except Exception as e: print(f"Error with WatsonX tool calling: {e}") raise e # Test 6: Streaming with WatsonX print("\n=== Test 6: Streaming Response (WatsonX) ===") try: chat_completion_response_wxai_stream = client.chat.completions.create( model=WATSONX_MODEL_ID, messages=[{"role": "user", "content": "What is the capital of France?"}], stream=True ) print("Model response: ", end="") for chunk in chat_completion_response_wxai_stream: # Each 'chunk' is a ChatCompletionChunk object. # We want the content from the 'delta' attribute. if hasattr(chunk, 'choices') and chunk.choices is not None: content = chunk.choices[0].delta.content # The first few chunks might have None content, so we check for it. if content is not None: print(content, end="", flush=True) print() except Exception as e: print(f"Error with streaming: {e}") raise e # Test 7: MCP with OpenAI print("\n=== Test 7: MCP Integration (OpenAI) ===") try: mcp_llama_stack_client_response = client.responses.create( model=OPENAI_MODEL_ID, input="Tell me about some parks in Rhode Island, and let me know if there are any upcoming events at them.", tools=[ { "type": "mcp", "server_url": NPS_MCP_URL, "server_label": "National Parks Service tools", "allowed_tools": ["search_parks", "get_park_events"], } ] ) print_response(mcp_llama_stack_client_response) except Exception as e: print(f"Error with MCP (OpenAI): {e}") raise e # Test 8: MCP with WatsonX print("\n=== Test 8: MCP Integration (WatsonX) ===") try: mcp_llama_stack_client_response = client.responses.create( model=WATSONX_MODEL_ID, input="What is the capital of France?" ) print_response(mcp_llama_stack_client_response) except Exception as e: print(f"Error with MCP (WatsonX): {e}") raise e # Test 9: MCP with Llama 3.3 print("\n=== Test 9: MCP Integration (Llama 3.3) ===") try: mcp_llama_stack_client_response = client.responses.create( model=WATSONX_MODEL_ID, input="Tell me about some parks in Rhode Island, and let me know if there are any upcoming events at them.", tools=[ { "type": "mcp", "server_url": NPS_MCP_URL, "server_label": "National Parks Service tools", "allowed_tools": ["search_parks", "get_park_events"], } ] ) print_response(mcp_llama_stack_client_response) except Exception as e: print(f"Error with MCP (Llama 3.3): {e}") raise e # Test 10: Embeddings print("\n=== Test 10: Embeddings ===") try: conn = http.client.HTTPConnection("localhost:8321") payload = json.dumps({ "model": "watsonx/ibm/granite-embedding-278m-multilingual", "input": "Hello, world!", }) headers = { 'Content-Type': 'application/json', 'Accept': 'application/json' } conn.request("POST", "/v1/openai/v1/embeddings", payload, headers) res = conn.getresponse() data = res.read() print(data.decode("utf-8")) except Exception as e: print(f"Error with Embeddings: {e}") raise e print("\n=== Testing Complete ===") if __name__ == "__main__": main() ``` --------- Signed-off-by: Bill Murdock <bmurdock@redhat.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> |
||
|
|
702fcd1abf
|
fix: Raising an error message to the user when registering an existing provider. (#3624)
When the user wants to change the attributes (which could include model name, dimensions,...etc) of an already registered provider, they will get an error message asking that they first unregister the provider before registering a new one. # What does this PR do? This PR updated the register function to raise an error to the user when they attempt to register a provider that was already registered asking them to un-register the existing provider first. <!-- If resolving an issue, uncomment and update the line below --> #2313 ## Test Plan Tested the change with /tests/unit/registry/test_registry.py --------- Co-authored-by: Omar Abdelwahab <omara@fb.com> |
||
|
|
0cde3d956d
|
chore: require valid logging category (#3712)
# What does this PR do? grep'd and audited all usage of 'get_logger' with help of Claude. ## Test Plan CI |
||
|
|
a3f5072776
|
chore!: remove --env from llama stack run (#3711)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Installer CI / lint (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Installer CI / smoke-test-on-dev (push) Failing after 2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 2s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.13) (push) Failing after 1s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m18s
# What does this PR do? user can simply set env vars in the beginning of the command.`FOO=BAR llama stack run ...` ## Test Plan Run TELEMETRY_SINKS=coneol uv run --with llama-stack llama stack build --distro=starter --image-type=venv --run --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3711). * #3714 * __->__ #3711 |
||
|
|
1970b4aa4b
|
fix: improve model availability checks: Allows use of unavailable models on startup (#3717)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 7s
UI Tests / ui-tests (22) (push) Successful in 39s
Pre-commit / pre-commit (push) Successful in 1m28s
- Allows use of unavailable models on startup - Add has_model method to ModelsRoutingTable for checking pre-registered models - Update check_model_availability to check model_store before provider APIs # What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Start llama stack and point unavailable vLLM ``` VLLM_URL=https://my-unavailable-vllm/v1 MILVUS_DB_PATH=./milvus.db INFERENCE_MODEL=vllm uv run --with llama-stack llama stack build --distro starter --image-type venv --run ``` llama stack will start without crashing but only notifying error. ``` - provider_id: rag-runtime toolgroup_id: builtin::rag vector_dbs: [] version: 2 INFO 2025-10-07 06:40:41,804 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue disabled for SQLite to avoid concurrency issues INFO 2025-10-07 06:40:42,066 llama_stack.providers.utils.responses.responses_store:96 openai_responses: Write queue disabled for SQLite to avoid concurrency issues ERROR 2025-10-07 06:40:58,882 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils: VLLMInferenceAdapter.list_provider_model_ids() failed with: Request timed out. WARNING 2025-10-07 06:40:58,883 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider vllm: Request timed out. [...] INFO 2025-10-07 06:40:59,036 uvicorn.error:216 uncategorized: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) INFO 2025-10-07 06:41:04,064 openai._base_client:1618 uncategorized: Retrying request to /models in 0.398814 seconds INFO 2025-10-07 06:41:09,497 openai._base_client:1618 uncategorized: Retrying request to /models in 0.781908 seconds ERROR 2025-10-07 06:41:15,282 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils: VLLMInferenceAdapter.list_provider_model_ids() failed with: Request timed out. WARNING 2025-10-07 06:41:15,283 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider vllm: Request timed out. ``` |
||
|
|
8b9af03a1b
|
fix: refresh log should be debug (#3720)
# What does this PR do?
when using a distro like starter where a bunch of providers are disabled
I should not see logs like:
```
in the provider data header, e.g. x-llamastack-provider-data: {"groq_api_key": "<API_KEY>"}, or in the provider config.
WARNING 2025-10-07 08:38:52,117 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider sambanova: API key is not set. Please provide a valid
API key in the provider data header, e.g. x-llamastack-provider-data: {"sambanova_api_key": "<API_KEY>"}, or in the provider config.
WARNING 2025-10-07 08:43:52,123 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider fireworks: Pass Fireworks API Key in the header
X-LlamaStack-Provider-Data as { "fireworks_api_key": <your api key>}
WARNING 2025-10-07 08:43:52,126 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider together: Pass Together API Key in the header
X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}
WARNING 2025-10-07 08:43:52,129 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider openai: API key is not set. Please provide a valid API
key in the provider data header, e.g. x-llamastack-provider-data: {"openai_api_key": "<API_KEY>"}, or in the provider config.
WARNING 2025-10-07 08:43:52,132 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider anthropic: API key is not set. Please provide a valid
API key in the provider data header, e.g. x-llamastack-provider-data: {"anthropic_api_key": "<API_KEY>"}, or in the provider config.
WARNING 2025-10-07 08:43:52,136 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider gemini: API key is not set. Please provide a valid API
key in the provider data header, e.g. x-llamastack-provider-data: {"gemini_api_key": "<API_KEY>"}, or in the provider config.
WARNING 2025-10-07 08:43:52,139 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider groq: API key is not set. Please provide a valid API key
in the provider data header, e.g. x-llamastack-provider-data: {"groq_api_key": "<API_KEY>"}, or in the provider config.
WARNING 2025-10-07 08:43:52,142 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider sambanova: API key is not set. Please provide a valid
API key in the provider data header, e.g. x-llamastack-provider-data: {"sambanova_api_key": "<API_KEY>"}, or in the provider config.
^CINFO 2025-10-07 08:46:11,996 llama_stack.core.utils.exec:75 core:
```
as WARNING. Switch to Debug.
Signed-off-by: Charlie Doern <cdoern@redhat.com>
|
||
|
|
bba9957edd
|
feat(api): Add vector store file batches api (#3642)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 9s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s
# What does this PR do? Add Open AI Compatible vector store file batches api. This functionality is needed to attach many files to a vector store as a batch. https://github.com/llamastack/llama-stack/issues/3533 API Stubs have been merged https://github.com/llamastack/llama-stack/pull/3615 Adds persistence for file batches as discussed in diff https://github.com/llamastack/llama-stack/pull/3544 (Used claude code for generation and reviewed by me) ## Test Plan 1. Unit tests pass 2. Also verified the cc-vec integration with LLamaStackClient works with the file batches api. https://github.com/raghotham/cc-vec 2. Integration tests pass |
||
|
|
f00bcd9561
|
feat: allow for multiple external provider specs (#3341)
# What does this PR do? when using the providers.d method of installation users could hand craft their AdapterSpec's to use overlapping code meaning one repo could contain an inline and remote impl. Currently installing a provider via module does not allow for that as each repo is only allowed to have one `get_provider_spec` method with one Spec returned add an optional way for `get_provider_spec` to return a list of `ProviderSpec` where each can be either an inline or remote impl. Note: the `adapter_type` in `get_provider_spec` MUST match the `provider_type` in the build/run yaml for this to work. resolves #3226 ## Test Plan once this merges we need to re-enable the external provider test and account for this functionality. Work needs to be done in the external provider repos to support this functionality. Signed-off-by: Charlie Doern <cdoern@redhat.com> |
||
|
|
426cac078b
|
chore: use uvicorn to start llama stack server everywhere (#3625)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 6s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 3s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 44s
Pre-commit / pre-commit (push) Successful in 1m24s
# What does this PR do? https://github.com/llamastack/llama-stack/pull/3462 allows using uvicorn to start llama stack server which supports spawning multiple workers. This PR enables us to launch >1 workers from `llama stack run` (will add the parameter in a follow-up PR, keeping this PR on simplifying) by removing the old way of launching stack server and consolidates launching via uvicorn.run only. ## Test Plan ran `llama stack run starter` CI |
||
|
|
61b4238912
|
feat(api): add extra_body parameter support with shields example (#3670)
## Summary Introduce `ExtraBodyField` annotation to enable parameters that arrive via extra_body in client SDKs but are accessible server-side with full typing. These parameters are documented in OpenAPI specs under **`x-llama-stack-extra-body-params`** but excluded from generated SDK signatures. Add `shields` parameter to `create_openai_response` as the first implementation using this pattern. ## Test Plan - added an integration test which checks that shields parameter passed via extra_body reaches server implementation 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: Claude <noreply@anthropic.com> |