Compare commits

..

1 commit

Author SHA1 Message Date
github-actions[bot]
dc53c3f9c8 Release candidate 0.2.24-dev.20251017 2025-10-17 04:04:59 +00:00
336 changed files with 18528 additions and 96497 deletions

View file

@ -1,19 +0,0 @@
.venv
__pycache__
*.pyc
*.pyo
*.pyd
*.so
.git
.gitignore
htmlcov*
.coverage
coverage*
.cache
.mypy_cache
.pytest_cache
.ruff_cache
uv.lock
node_modules
build
/tmp

View file

@ -82,13 +82,11 @@ runs:
echo "No recording changes"
fi
- name: Write docker logs to file
- name: Write inference logs to file
if: ${{ always() }}
shell: bash
run: |
# Ollama logs (if ollama container exists)
sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log 2>&1 || true
# Note: distro container logs are now dumped in integration-tests.sh before container is removed
sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log || true
- name: Upload logs
if: ${{ always() }}

View file

@ -57,7 +57,7 @@ runs:
echo "Building Llama Stack"
LLAMA_STACK_DIR=. \
uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install
uv run --no-sync llama stack build --template ci-tests --image-type venv
- name: Configure git for commits
shell: bash

View file

@ -14,7 +14,6 @@ Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a tabl
| Pre-commit | [pre-commit.yml](pre-commit.yml) | Run pre-commit checks |
| Pre-commit Bot | [precommit-trigger.yml](precommit-trigger.yml) | Pre-commit bot for PR |
| Test Llama Stack Build | [providers-build.yml](providers-build.yml) | Test llama stack build |
| Test llama stack list-deps | [providers-list-deps.yml](providers-list-deps.yml) | Test llama stack list-deps |
| Python Package Build Test | [python-build-test.yml](python-build-test.yml) | Test building the llama-stack PyPI project |
| Integration Tests (Record) | [record-integration-tests.yml](record-integration-tests.yml) | Run the integration test suite from tests/integration |
| Check semantic PR titles | [semantic-pr.yml](semantic-pr.yml) | Ensure that PR titles follow the conventional commit spec |

View file

@ -30,11 +30,8 @@ jobs:
- name: Build a single provider
run: |
docker build . \
-f containers/Containerfile \
--build-arg INSTALL_MODE=editable \
--build-arg DISTRO_NAME=starter \
--tag llama-stack:starter-ci
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync \
llama stack build --template starter --image-type container --image-name test
- name: Run installer end-to-end
run: |

View file

@ -73,24 +73,6 @@ jobs:
image_name: kube
apis: []
providers: {}
storage:
backends:
kv_default:
type: kv_sqlite
db_path: $run_dir/kvstore.db
sql_default:
type: sql_sqlite
db_path: $run_dir/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
conversations:
table_name: openai_conversations
backend: sql_default
server:
port: 8321
EOF

View file

@ -47,7 +47,7 @@ jobs:
strategy:
fail-fast: false
matrix:
client-type: [library, docker]
client-type: [library, server]
# Use Python 3.13 only on nightly schedule (daily latest client test), otherwise use 3.12
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
client-version: ${{ (github.event.schedule == '0 0 * * *' || github.event.inputs.test-all-client-versions == 'true') && fromJSON('["published", "latest"]') || fromJSON('["latest"]') }}
@ -82,7 +82,7 @@ jobs:
env:
OPENAI_API_KEY: dummy
with:
stack-config: ${{ matrix.client-type == 'library' && 'ci-tests' || matrix.client-type == 'server' && 'server:ci-tests' || 'docker:ci-tests' }}
stack-config: ${{ matrix.client-type == 'library' && 'ci-tests' || 'server:ci-tests' }}
setup: ${{ matrix.config.setup }}
inference-mode: 'replay'
suite: ${{ matrix.config.suite }}

View file

@ -144,7 +144,7 @@ jobs:
- name: Build Llama Stack
run: |
uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install
uv run --no-sync llama stack build --template ci-tests --image-type venv
- name: Check Storage and Memory Available Before Tests
if: ${{ always() }}
@ -169,7 +169,9 @@ jobs:
run: |
uv run --no-sync \
pytest -sv --stack-config="files=inline::localfs,inference=inline::sentence-transformers,vector_io=${{ matrix.vector-io-provider }}" \
tests/integration/vector_io
tests/integration/vector_io \
--embedding-model inline::sentence-transformers/nomic-ai/nomic-embed-text-v1.5 \
--embedding-dimension 768
- name: Check Storage and Memory Available After Tests
if: ${{ always() }}

View file

@ -37,7 +37,7 @@ jobs:
.pre-commit-config.yaml
- name: Set up Node.js
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0
with:
node-version: '20'
cache: 'npm'

View file

@ -99,7 +99,7 @@ jobs:
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: ${{ steps.check_author.outputs.pr_number }},
body: `⏳ Running [pre-commit hooks](https://github.com/${context.repo.owner}/${context.repo.repo}/actions/runs/${context.runId}) on PR #${{ steps.check_author.outputs.pr_number }}...`
body: `⏳ Running pre-commit hooks on PR #${{ steps.check_author.outputs.pr_number }}...`
});
- name: Checkout PR branch (same-repo)
@ -141,7 +141,7 @@ jobs:
- name: Set up Node.js
if: steps.check_author.outputs.authorized == 'true'
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0
with:
node-version: '20'
cache: 'npm'

View file

@ -14,8 +14,6 @@ on:
- '.github/workflows/providers-build.yml'
- 'llama_stack/distributions/**'
- 'pyproject.toml'
- 'containers/Containerfile'
- '.dockerignore'
pull_request:
paths:
@ -26,8 +24,6 @@ on:
- '.github/workflows/providers-build.yml'
- 'llama_stack/distributions/**'
- 'pyproject.toml'
- 'containers/Containerfile'
- '.dockerignore'
concurrency:
group: ${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_id || github.ref }}
@ -64,19 +60,15 @@ jobs:
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Install distribution into venv
if: matrix.image-type == 'venv'
- name: Print build dependencies
run: |
uv run llama stack list-deps ${{ matrix.distro }} | xargs -L1 uv pip install
uv run llama stack build --distro ${{ matrix.distro }} --image-type ${{ matrix.image-type }} --image-name test --print-deps-only
- name: Build container image
if: matrix.image-type == 'container'
- name: Run Llama Stack Build
run: |
docker build . \
-f containers/Containerfile \
--build-arg INSTALL_MODE=editable \
--build-arg DISTRO_NAME=${{ matrix.distro }} \
--tag llama-stack:${{ matrix.distro }}-ci
# USE_COPY_NOT_MOUNT is set to true since mounting is not supported by docker buildx, we use COPY instead
# LLAMA_STACK_DIR is set to the current directory so we are building from the source
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --distro ${{ matrix.distro }} --image-type ${{ matrix.image-type }} --image-name test
- name: Print dependencies in the image
if: matrix.image-type == 'venv'
@ -94,8 +86,8 @@ jobs:
- name: Build a single provider
run: |
uv pip install -e .
uv run --no-sync llama stack list-deps --providers inference=remote::ollama | xargs -L1 uv pip install
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --image-type venv --image-name test --providers inference=remote::ollama
build-custom-container-distribution:
runs-on: ubuntu-latest
steps:
@ -105,16 +97,11 @@ jobs:
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Build container image
- name: Build a single provider
run: |
BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "python:3.12-slim"' llama_stack/distributions/ci-tests/build.yaml)
docker build . \
-f containers/Containerfile \
--build-arg INSTALL_MODE=editable \
--build-arg DISTRO_NAME=ci-tests \
--build-arg BASE_IMAGE="$BASE_IMAGE" \
--build-arg RUN_CONFIG_PATH=/workspace/llama_stack/distributions/ci-tests/run.yaml \
-t llama-stack:ci-tests
yq -i '.image_type = "container"' llama_stack/distributions/ci-tests/build.yaml
yq -i '.image_name = "test"' llama_stack/distributions/ci-tests/build.yaml
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config llama_stack/distributions/ci-tests/build.yaml
- name: Inspect the container image entrypoint
run: |
@ -125,7 +112,7 @@ jobs:
fi
entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID)
echo "Entrypoint: $entrypoint"
if [ "$entrypoint" != "[/usr/local/bin/llama-stack-entrypoint.sh]" ]; then
if [ "$entrypoint" != "[llama stack run /app/run.yaml]" ]; then
echo "Entrypoint is not correct"
exit 1
fi
@ -142,19 +129,17 @@ jobs:
- name: Pin distribution to UBI9 base
run: |
yq -i '
.image_type = "container" |
.image_name = "ubi9-test" |
.distribution_spec.container_image = "registry.access.redhat.com/ubi9:latest"
' llama_stack/distributions/ci-tests/build.yaml
- name: Build UBI9 container image
- name: Build dev container (UBI9)
env:
USE_COPY_NOT_MOUNT: "true"
LLAMA_STACK_DIR: "."
run: |
BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "registry.access.redhat.com/ubi9:latest"' llama_stack/distributions/ci-tests/build.yaml)
docker build . \
-f containers/Containerfile \
--build-arg INSTALL_MODE=editable \
--build-arg DISTRO_NAME=ci-tests \
--build-arg BASE_IMAGE="$BASE_IMAGE" \
--build-arg RUN_CONFIG_PATH=/workspace/llama_stack/distributions/ci-tests/run.yaml \
-t llama-stack:ci-tests-ubi9
uv run llama stack build --config llama_stack/distributions/ci-tests/build.yaml
- name: Inspect UBI9 image
run: |
@ -165,7 +150,7 @@ jobs:
fi
entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID)
echo "Entrypoint: $entrypoint"
if [ "$entrypoint" != "[/usr/local/bin/llama-stack-entrypoint.sh]" ]; then
if [ "$entrypoint" != "[llama stack run /app/run.yaml]" ]; then
echo "Entrypoint is not correct"
exit 1
fi

View file

@ -1,105 +0,0 @@
name: Test llama stack list-deps
run-name: Test llama stack list-deps
on:
push:
branches:
- main
paths:
- 'llama_stack/cli/stack/list_deps.py'
- 'llama_stack/cli/stack/_list_deps.py'
- 'llama_stack/core/build.*'
- 'llama_stack/core/*.sh'
- '.github/workflows/providers-list-deps.yml'
- 'llama_stack/templates/**'
- 'pyproject.toml'
pull_request:
paths:
- 'llama_stack/cli/stack/list_deps.py'
- 'llama_stack/cli/stack/_list_deps.py'
- 'llama_stack/core/build.*'
- 'llama_stack/core/*.sh'
- '.github/workflows/providers-list-deps.yml'
- 'llama_stack/templates/**'
- 'pyproject.toml'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
generate-matrix:
runs-on: ubuntu-latest
outputs:
distros: ${{ steps.set-matrix.outputs.distros }}
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
- name: Generate Distribution List
id: set-matrix
run: |
distros=$(ls llama_stack/distributions/*/*build.yaml | awk -F'/' '{print $(NF-1)}' | jq -R -s -c 'split("\n")[:-1]')
echo "distros=$distros" >> "$GITHUB_OUTPUT"
list-deps:
needs: generate-matrix
runs-on: ubuntu-latest
strategy:
matrix:
distro: ${{ fromJson(needs.generate-matrix.outputs.distros) }}
image-type: [venv, container]
fail-fast: false # We want to run all jobs even if some fail
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Print dependencies
run: |
uv run llama stack list-deps ${{ matrix.distro }}
- name: Install Distro using llama stack list-deps
run: |
# USE_COPY_NOT_MOUNT is set to true since mounting is not supported by docker buildx, we use COPY instead
# LLAMA_STACK_DIR is set to the current directory so we are building from the source
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack list-deps ${{ matrix.distro }} | xargs -L1 uv pip install
- name: Print dependencies in the image
if: matrix.image-type == 'venv'
run: |
uv pip list
show-single-provider:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Show a single provider
run: |
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack list-deps --providers inference=remote::ollama
list-deps-from-config:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: list-des from Config
env:
USE_COPY_NOT_MOUNT: "true"
LLAMA_STACK_DIR: "."
run: |
uv run llama stack list-deps llama_stack/distributions/ci-tests/build.yaml

View file

@ -24,7 +24,7 @@ jobs:
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
- name: Install uv
uses: astral-sh/setup-uv@3259c6206f993105e3a61b142c2d97bf4b9ef83d # v7.1.0
uses: astral-sh/setup-uv@eb1897b8dc4b5d5bfe39a428a8f2304605e0983c # v7.0.0
with:
python-version: ${{ matrix.python-version }}
activate-environment: true

View file

@ -46,9 +46,9 @@ jobs:
yq -i '.image_type = "${{ matrix.image-type }}"' tests/external/ramalama-stack/run.yaml
cat tests/external/ramalama-stack/run.yaml
- name: Install distribution dependencies
- name: Build distro from config file
run: |
uv run llama stack list-deps tests/external/ramalama-stack/build.yaml | xargs -L1 uv pip install
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config tests/external/ramalama-stack/build.yaml
- name: Start Llama Stack server in background
if: ${{ matrix.image-type }} == 'venv'

View file

@ -44,14 +44,11 @@ jobs:
- name: Print distro dependencies
run: |
uv run --no-sync llama stack list-deps tests/external/build.yaml
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack build --config tests/external/build.yaml --print-deps-only
- name: Build distro from config file
run: |
uv venv ci-test
source ci-test/bin/activate
uv pip install -e .
LLAMA_STACK_LOGGING=all=CRITICAL llama stack list-deps tests/external/build.yaml | xargs -L1 uv pip install
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack build --config tests/external/build.yaml
- name: Start Llama Stack server in background
if: ${{ matrix.image-type }} == 'venv'

View file

@ -29,7 +29,7 @@ jobs:
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
- name: Setup Node.js
uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0
uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'

View file

@ -167,9 +167,9 @@ under the LICENSE file in the root directory of this source tree.
Some tips about common tasks you work on while contributing to Llama Stack:
### Installing dependencies of distributions
### Using `llama stack build`
When installing dependencies for a distribution, you can use `llama stack list-deps` to view and install the required packages.
Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands.
Example:
```bash
@ -177,12 +177,7 @@ cd work/
git clone https://github.com/llamastack/llama-stack.git
git clone https://github.com/llamastack/llama-stack-client-python.git
cd llama-stack
# Show dependencies for a distribution
llama stack list-deps <distro-name>
# Install dependencies
llama stack list-deps <distro-name> | xargs -L1 uv pip install
LLAMA_STACK_DIR=$(pwd) LLAMA_STACK_CLIENT_DIR=../llama-stack-client-python llama stack build --distro <...>
```
### Updating distribution configurations

View file

@ -27,11 +27,8 @@ MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
huggingface-cli download meta-llama/$MODEL --local-dir ~/.llama/$MODEL
# install dependencies for the distribution
llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install
# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack run meta-reference-gpu
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu
# install client to interact with the server
pip install llama-stack-client
@ -92,7 +89,7 @@ As more providers start supporting Llama 4, you can use them in Llama Stack as w
To try Llama Stack locally, run:
```bash
curl -LsSf https://github.com/llamastack/llama-stack/raw/main/scripts/install.sh | bash
curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash
```
### Overview

View file

@ -98,30 +98,21 @@ data:
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
references:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 768
@ -146,4 +137,5 @@ data:
port: 8323
kind: ConfigMap
metadata:
creationTimestamp: null
name: llama-stack-config

View file

@ -95,30 +95,21 @@ providers:
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
references:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 768

View file

@ -1,8 +0,0 @@
These are the source-of-truth configuration files used to generate the Stainless client SDKs via Stainless.
- `openapi.yml`: this is the OpenAPI specification for the Llama Stack API.
- `openapi.stainless.yml`: this is the Stainless _configuration_ which instructs Stainless how to generate the client SDKs.
A small side note: notice the `.yml` suffixes since Stainless uses that suffix typically for its configuration files.
These files go hand-in-hand. As of now, only the `openapi.yml` file is automatically generated using the `run_openapi_generator.sh` script.

View file

@ -1,610 +0,0 @@
# yaml-language-server: $schema=https://app.stainlessapi.com/config-internal.schema.json
organization:
# Name of your organization or company, used to determine the name of the client
# and headings.
name: llama-stack-client
docs: https://llama-stack.readthedocs.io/en/latest/
contact: llamastack@meta.com
security:
- {}
- BearerAuth: []
security_schemes:
BearerAuth:
type: http
scheme: bearer
# `targets` define the output targets and their customization options, such as
# whether to emit the Node SDK and what it's package name should be.
targets:
node:
package_name: llama-stack-client
production_repo: llamastack/llama-stack-client-typescript
publish:
npm: false
python:
package_name: llama_stack_client
production_repo: llamastack/llama-stack-client-python
options:
use_uv: true
publish:
pypi: true
project_name: llama_stack_client
kotlin:
reverse_domain: com.llama_stack_client.api
production_repo: null
publish:
maven: false
go:
package_name: llama-stack-client
production_repo: llamastack/llama-stack-client-go
options:
enable_v2: true
back_compat_use_shared_package: false
# `client_settings` define settings for the API client, such as extra constructor
# arguments (used for authentication), retry behavior, idempotency, etc.
client_settings:
default_env_prefix: LLAMA_STACK_CLIENT
opts:
api_key:
type: string
read_env: LLAMA_STACK_CLIENT_API_KEY
auth: { security_scheme: BearerAuth }
nullable: true
# `environments` are a map of the name of the environment (e.g. "sandbox",
# "production") to the corresponding url to use.
environments:
production: http://any-hosted-llama-stack.com
# `pagination` defines [pagination schemes] which provides a template to match
# endpoints and generate next-page and auto-pagination helpers in the SDKs.
pagination:
- name: datasets_iterrows
type: offset
request:
dataset_id:
type: string
start_index:
type: integer
x-stainless-pagination-property:
purpose: offset_count_param
limit:
type: integer
response:
data:
type: array
items:
type: object
next_index:
type: integer
x-stainless-pagination-property:
purpose: offset_count_start_field
- name: openai_cursor_page
type: cursor
request:
limit:
type: integer
after:
type: string
x-stainless-pagination-property:
purpose: next_cursor_param
response:
data:
type: array
items: {}
has_more:
type: boolean
last_id:
type: string
x-stainless-pagination-property:
purpose: next_cursor_field
# `resources` define the structure and organziation for your API, such as how
# methods and models are grouped together and accessed. See the [configuration
# guide] for more information.
#
# [configuration guide]:
# https://app.stainlessapi.com/docs/guides/configure#resources
resources:
$shared:
models:
agent_config: AgentConfig
interleaved_content_item: InterleavedContentItem
interleaved_content: InterleavedContent
param_type: ParamType
safety_violation: SafetyViolation
sampling_params: SamplingParams
scoring_result: ScoringResult
message: Message
user_message: UserMessage
completion_message: CompletionMessage
tool_response_message: ToolResponseMessage
system_message: SystemMessage
tool_call: ToolCall
query_result: RAGQueryResult
document: RAGDocument
query_config: RAGQueryConfig
response_format: ResponseFormat
toolgroups:
models:
tool_group: ToolGroup
list_tool_groups_response: ListToolGroupsResponse
methods:
register: post /v1/toolgroups
get: get /v1/toolgroups/{toolgroup_id}
list: get /v1/toolgroups
unregister: delete /v1/toolgroups/{toolgroup_id}
tools:
methods:
get: get /v1/tools/{tool_name}
list:
endpoint: get /v1/tools
paginated: false
tool_runtime:
models:
tool_def: ToolDef
tool_invocation_result: ToolInvocationResult
methods:
list_tools:
endpoint: get /v1/tool-runtime/list-tools
paginated: false
invoke_tool: post /v1/tool-runtime/invoke
subresources:
rag_tool:
methods:
insert: post /v1/tool-runtime/rag-tool/insert
query: post /v1/tool-runtime/rag-tool/query
responses:
models:
response_object_stream: OpenAIResponseObjectStream
response_object: OpenAIResponseObject
methods:
create:
type: http
endpoint: post /v1/responses
streaming:
stream_event_model: responses.response_object_stream
param_discriminator: stream
retrieve: get /v1/responses/{response_id}
list:
type: http
endpoint: get /v1/responses
delete:
type: http
endpoint: delete /v1/responses/{response_id}
subresources:
input_items:
methods:
list:
type: http
endpoint: get /v1/responses/{response_id}/input_items
conversations:
models:
conversation_object: Conversation
methods:
create:
type: http
endpoint: post /v1/conversations
retrieve: get /v1/conversations/{conversation_id}
update:
type: http
endpoint: post /v1/conversations/{conversation_id}
delete:
type: http
endpoint: delete /v1/conversations/{conversation_id}
subresources:
items:
methods:
get:
type: http
endpoint: get /v1/conversations/{conversation_id}/items/{item_id}
list:
type: http
endpoint: get /v1/conversations/{conversation_id}/items
create:
type: http
endpoint: post /v1/conversations/{conversation_id}/items
inspect:
models:
healthInfo: HealthInfo
providerInfo: ProviderInfo
routeInfo: RouteInfo
versionInfo: VersionInfo
methods:
health: get /v1/health
version: get /v1/version
embeddings:
models:
create_embeddings_response: OpenAIEmbeddingsResponse
methods:
create: post /v1/embeddings
chat:
models:
chat_completion_chunk: OpenAIChatCompletionChunk
subresources:
completions:
methods:
create:
type: http
endpoint: post /v1/chat/completions
streaming:
stream_event_model: chat.chat_completion_chunk
param_discriminator: stream
list:
type: http
endpoint: get /v1/chat/completions
retrieve:
type: http
endpoint: get /v1/chat/completions/{completion_id}
completions:
methods:
create:
type: http
endpoint: post /v1/completions
streaming:
param_discriminator: stream
vector_io:
models:
queryChunksResponse: QueryChunksResponse
methods:
insert: post /v1/vector-io/insert
query: post /v1/vector-io/query
vector_stores:
models:
vector_store: VectorStoreObject
list_vector_stores_response: VectorStoreListResponse
vector_store_delete_response: VectorStoreDeleteResponse
vector_store_search_response: VectorStoreSearchResponsePage
methods:
create: post /v1/vector_stores
list:
endpoint: get /v1/vector_stores
retrieve: get /v1/vector_stores/{vector_store_id}
update: post /v1/vector_stores/{vector_store_id}
delete: delete /v1/vector_stores/{vector_store_id}
search: post /v1/vector_stores/{vector_store_id}/search
subresources:
files:
models:
vector_store_file: VectorStoreFileObject
methods:
list: get /v1/vector_stores/{vector_store_id}/files
retrieve: get /v1/vector_stores/{vector_store_id}/files/{file_id}
update: post /v1/vector_stores/{vector_store_id}/files/{file_id}
delete: delete /v1/vector_stores/{vector_store_id}/files/{file_id}
create: post /v1/vector_stores/{vector_store_id}/files
content: get /v1/vector_stores/{vector_store_id}/files/{file_id}/content
file_batches:
models:
vector_store_file_batches: VectorStoreFileBatchObject
list_vector_store_files_in_batch_response: VectorStoreFilesListInBatchResponse
methods:
create: post /v1/vector_stores/{vector_store_id}/file_batches
retrieve: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}
list_files: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files
cancel: post /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel
models:
models:
model: Model
list_models_response: ListModelsResponse
methods:
retrieve: get /v1/models/{model_id}
list:
endpoint: get /v1/models
paginated: false
register: post /v1/models
unregister: delete /v1/models/{model_id}
subresources:
openai:
methods:
list:
endpoint: get /v1/models
paginated: false
providers:
models:
list_providers_response: ListProvidersResponse
methods:
list:
endpoint: get /v1/providers
paginated: false
retrieve: get /v1/providers/{provider_id}
routes:
models:
list_routes_response: ListRoutesResponse
methods:
list:
endpoint: get /v1/inspect/routes
paginated: false
moderations:
models:
create_response: ModerationObject
methods:
create: post /v1/moderations
safety:
models:
run_shield_response: RunShieldResponse
methods:
run_shield: post /v1/safety/run-shield
shields:
models:
shield: Shield
list_shields_response: ListShieldsResponse
methods:
retrieve: get /v1/shields/{identifier}
list:
endpoint: get /v1/shields
paginated: false
register: post /v1/shields
delete: delete /v1/shields/{identifier}
synthetic_data_generation:
models:
syntheticDataGenerationResponse: SyntheticDataGenerationResponse
methods:
generate: post /v1/synthetic-data-generation/generate
telemetry:
models:
span_with_status: SpanWithStatus
trace: Trace
query_spans_response: QuerySpansResponse
event: Event
query_condition: QueryCondition
methods:
query_traces:
endpoint: post /v1alpha/telemetry/traces
skip_test_reason: 'unsupported query params in java / kotlin'
get_span_tree: post /v1alpha/telemetry/spans/{span_id}/tree
query_spans:
endpoint: post /v1alpha/telemetry/spans
skip_test_reason: 'unsupported query params in java / kotlin'
query_metrics:
endpoint: post /v1alpha/telemetry/metrics/{metric_name}
skip_test_reason: 'unsupported query params in java / kotlin'
# log_event: post /v1alpha/telemetry/events
save_spans_to_dataset: post /v1alpha/telemetry/spans/export
get_span: get /v1alpha/telemetry/traces/{trace_id}/spans/{span_id}
get_trace: get /v1alpha/telemetry/traces/{trace_id}
scoring:
methods:
score: post /v1/scoring/score
score_batch: post /v1/scoring/score-batch
scoring_functions:
methods:
retrieve: get /v1/scoring-functions/{scoring_fn_id}
list:
endpoint: get /v1/scoring-functions
paginated: false
register: post /v1/scoring-functions
models:
scoring_fn: ScoringFn
scoring_fn_params: ScoringFnParams
list_scoring_functions_response: ListScoringFunctionsResponse
benchmarks:
methods:
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}
list:
endpoint: get /v1alpha/eval/benchmarks
paginated: false
register: post /v1alpha/eval/benchmarks
models:
benchmark: Benchmark
list_benchmarks_response: ListBenchmarksResponse
files:
methods:
create: post /v1/files
list: get /v1/files
retrieve: get /v1/files/{file_id}
delete: delete /v1/files/{file_id}
content: get /v1/files/{file_id}/content
models:
file: OpenAIFileObject
list_files_response: ListOpenAIFileResponse
delete_file_response: OpenAIFileDeleteResponse
alpha:
subresources:
inference:
methods:
rerank: post /v1alpha/inference/rerank
post_training:
models:
algorithm_config: AlgorithmConfig
post_training_job: PostTrainingJob
list_post_training_jobs_response: ListPostTrainingJobsResponse
methods:
preference_optimize: post /v1alpha/post-training/preference-optimize
supervised_fine_tune: post /v1alpha/post-training/supervised-fine-tune
subresources:
job:
methods:
artifacts: get /v1alpha/post-training/job/artifacts
cancel: post /v1alpha/post-training/job/cancel
status: get /v1alpha/post-training/job/status
list:
endpoint: get /v1alpha/post-training/jobs
paginated: false
eval:
methods:
evaluate_rows: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
evaluate_rows_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
subresources:
jobs:
methods:
cancel: delete /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
status: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result
models:
evaluate_response: EvaluateResponse
benchmark_config: BenchmarkConfig
job: Job
agents:
methods:
create: post /v1alpha/agents
list: get /v1alpha/agents
retrieve: get /v1alpha/agents/{agent_id}
delete: delete /v1alpha/agents/{agent_id}
models:
inference_step: InferenceStep
tool_execution_step: ToolExecutionStep
tool_response: ToolResponse
shield_call_step: ShieldCallStep
memory_retrieval_step: MemoryRetrievalStep
subresources:
session:
models:
session: Session
methods:
list: get /v1alpha/agents/{agent_id}/sessions
create: post /v1alpha/agents/{agent_id}/session
delete: delete /v1alpha/agents/{agent_id}/session/{session_id}
retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}
steps:
methods:
retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}
turn:
models:
turn: Turn
turn_response_event: AgentTurnResponseEvent
agent_turn_response_stream_chunk: AgentTurnResponseStreamChunk
methods:
create:
type: http
endpoint: post /v1alpha/agents/{agent_id}/session/{session_id}/turn
streaming:
stream_event_model: alpha.agents.turn.agent_turn_response_stream_chunk
param_discriminator: stream
retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}
resume:
type: http
endpoint: post /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume
streaming:
stream_event_model: alpha.agents.turn.agent_turn_response_stream_chunk
param_discriminator: stream
beta:
subresources:
datasets:
models:
list_datasets_response: ListDatasetsResponse
methods:
register: post /v1beta/datasets
retrieve: get /v1beta/datasets/{dataset_id}
list:
endpoint: get /v1beta/datasets
paginated: false
unregister: delete /v1beta/datasets/{dataset_id}
iterrows: get /v1beta/datasetio/iterrows/{dataset_id}
appendrows: post /v1beta/datasetio/append-rows/{dataset_id}
settings:
license: MIT
unwrap_response_fields: [ data ]
openapi:
transformations:
- command: renameValue
reason: pydantic reserved name
args:
filter:
only:
- '$.components.schemas.InferenceStep.properties.model_response'
rename:
python:
property_name: 'inference_model_response'
# - command: renameValue
# reason: pydantic reserved name
# args:
# filter:
# only:
# - '$.components.schemas.Model.properties.model_type'
# rename:
# python:
# property_name: 'type'
- command: mergeObject
reason: Better return_type using enum
args:
target:
- '$.components.schemas'
object:
ReturnType:
additionalProperties: false
properties:
type:
enum:
- string
- number
- boolean
- array
- object
- json
- union
- chat_completion_input
- completion_input
- agent_turn_input
required:
- type
type: object
- command: replaceProperties
reason: Replace return type properties with better model (see above)
args:
filter:
only:
- '$.components.schemas.ScoringFn.properties.return_type'
- '$.components.schemas.RegisterScoringFunctionRequest.properties.return_type'
value:
$ref: '#/components/schemas/ReturnType'
- command: oneOfToAnyOf
reason: Prism (mock server) doesn't like one of our requests as it technically matches multiple variants
- reason: For better names
command: extractToRefs
args:
ref:
target: '$.components.schemas.ToolCallDelta.properties.tool_call'
name: '#/components/schemas/ToolCallOrString'
# `readme` is used to configure the code snippets that will be rendered in the
# README.md of various SDKs. In particular, you can change the `headline`
# snippet's endpoint and the arguments to call it with.
readme:
example_requests:
default:
type: request
endpoint: post /v1/chat/completions
params: &ref_0 {}
headline:
type: request
endpoint: post /v1/models
params: *ref_0
pagination:
type: request
endpoint: post /v1/chat/completions
params: {}

File diff suppressed because it is too large Load diff

View file

@ -1,137 +0,0 @@
# syntax=docker/dockerfile:1.6
#
# This Dockerfile is used to build the Llama Stack container image.
# Example:
# docker build \
# -f containers/Containerfile \
# --build-arg DISTRO_NAME=starter \
# --tag llama-stack:starter .
ARG BASE_IMAGE=python:3.12-slim
FROM ${BASE_IMAGE}
ARG INSTALL_MODE="pypi"
ARG LLAMA_STACK_DIR="/workspace"
ARG LLAMA_STACK_CLIENT_DIR=""
ARG PYPI_VERSION=""
ARG TEST_PYPI_VERSION=""
ARG KEEP_WORKSPACE=""
ARG DISTRO_NAME="starter"
ARG RUN_CONFIG_PATH=""
ARG UV_HTTP_TIMEOUT=500
ENV UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT}
ENV PYTHONDONTWRITEBYTECODE=1
ENV PIP_DISABLE_PIP_VERSION_CHECK=1
WORKDIR /app
RUN set -eux; \
if command -v dnf >/dev/null 2>&1; then \
dnf -y update && \
dnf install -y iputils git net-tools wget \
vim-minimal python3.12 python3.12-pip python3.12-wheel \
python3.12-setuptools python3.12-devel gcc gcc-c++ make && \
ln -sf /usr/bin/pip3.12 /usr/local/bin/pip && \
ln -sf /usr/bin/python3.12 /usr/local/bin/python && \
dnf clean all; \
elif command -v apt-get >/dev/null 2>&1; then \
apt-get update && \
apt-get install -y --no-install-recommends \
iputils-ping net-tools iproute2 dnsutils telnet \
curl wget git procps psmisc lsof traceroute bubblewrap \
gcc g++ && \
rm -rf /var/lib/apt/lists/*; \
else \
echo "Unsupported base image: expected dnf or apt-get" >&2; \
exit 1; \
fi
RUN pip install --no-cache-dir uv
ENV UV_SYSTEM_PYTHON=1
ENV INSTALL_MODE=${INSTALL_MODE}
ENV LLAMA_STACK_DIR=${LLAMA_STACK_DIR}
ENV LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR}
ENV PYPI_VERSION=${PYPI_VERSION}
ENV TEST_PYPI_VERSION=${TEST_PYPI_VERSION}
ENV KEEP_WORKSPACE=${KEEP_WORKSPACE}
ENV DISTRO_NAME=${DISTRO_NAME}
ENV RUN_CONFIG_PATH=${RUN_CONFIG_PATH}
# Copy the repository so editable installs and run configurations are available.
COPY . /workspace
# Install the client package if it is provided
# NOTE: this is installed before llama-stack since llama-stack depends on llama-stack-client-python
RUN set -eux; \
if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then \
if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ]; then \
echo "LLAMA_STACK_CLIENT_DIR is set but $LLAMA_STACK_CLIENT_DIR does not exist" >&2; \
exit 1; \
fi; \
uv pip install --no-cache-dir -e "$LLAMA_STACK_CLIENT_DIR"; \
fi;
# Install llama-stack
RUN set -eux; \
if [ "$INSTALL_MODE" = "editable" ]; then \
if [ ! -d "$LLAMA_STACK_DIR" ]; then \
echo "INSTALL_MODE=editable requires LLAMA_STACK_DIR to point to a directory inside the build context" >&2; \
exit 1; \
fi; \
uv pip install --no-cache-dir -e "$LLAMA_STACK_DIR"; \
elif [ "$INSTALL_MODE" = "test-pypi" ]; then \
uv pip install --no-cache-dir fastapi libcst; \
if [ -n "$TEST_PYPI_VERSION" ]; then \
uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match "llama-stack==$TEST_PYPI_VERSION"; \
else \
uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match llama-stack; \
fi; \
else \
if [ -n "$PYPI_VERSION" ]; then \
uv pip install --no-cache-dir "llama-stack==$PYPI_VERSION"; \
else \
uv pip install --no-cache-dir llama-stack; \
fi; \
fi;
# Install the dependencies for the distribution
RUN set -eux; \
if [ -z "$DISTRO_NAME" ]; then \
echo "DISTRO_NAME must be provided" >&2; \
exit 1; \
fi; \
deps="$(llama stack list-deps "$DISTRO_NAME")"; \
if [ -n "$deps" ]; then \
printf '%s\n' "$deps" | xargs -L1 uv pip install --no-cache-dir; \
fi
# Cleanup
RUN set -eux; \
pip uninstall -y uv; \
should_remove=1; \
if [ -n "$KEEP_WORKSPACE" ]; then should_remove=0; fi; \
if [ "$INSTALL_MODE" = "editable" ]; then should_remove=0; fi; \
case "$RUN_CONFIG_PATH" in \
/workspace*) should_remove=0 ;; \
esac; \
if [ "$should_remove" -eq 1 ] && [ -d /workspace ]; then rm -rf /workspace; fi
RUN cat <<'EOF' >/usr/local/bin/llama-stack-entrypoint.sh
#!/bin/sh
set -e
if [ -n "$RUN_CONFIG_PATH" ] && [ -f "$RUN_CONFIG_PATH" ]; then
exec llama stack run "$RUN_CONFIG_PATH" "$@"
fi
if [ -n "$DISTRO_NAME" ]; then
exec llama stack run "$DISTRO_NAME" "$@"
fi
exec llama stack run "$@"
EOF
RUN chmod +x /usr/local/bin/llama-stack-entrypoint.sh
RUN mkdir -p /.llama /.cache && chmod -R g+rw /app /.llama /.cache
ENTRYPOINT ["/usr/local/bin/llama-stack-entrypoint.sh"]

View file

@ -51,8 +51,8 @@ device: cpu
You can access the HuggingFace trainer via the `starter` distribution:
```bash
llama stack list-deps starter | xargs -L1 uv pip install
llama stack run starter
llama stack build --distro starter --image-type venv
llama stack run ~/.llama/distributions/starter/starter-run.yaml
```
### Usage Example

View file

@ -175,7 +175,8 @@ llama-stack-client benchmarks register \
**1. Start the Llama Stack API Server**
```bash
llama stack list-deps together | xargs -L1 uv pip install
# Build and run a distribution (example: together)
llama stack build --distro together --image-type venv
llama stack run together
```
@ -208,7 +209,7 @@ The playground works with any Llama Stack distribution. Popular options include:
<TabItem value="together" label="Together AI">
```bash
llama stack list-deps together | xargs -L1 uv pip install
llama stack build --distro together --image-type venv
llama stack run together
```
@ -221,7 +222,7 @@ llama stack run together
<TabItem value="ollama" label="Ollama (Local)">
```bash
llama stack list-deps ollama | xargs -L1 uv pip install
llama stack build --distro ollama --image-type venv
llama stack run ollama
```
@ -234,7 +235,7 @@ llama stack run ollama
<TabItem value="meta-reference" label="Meta Reference">
```bash
llama stack list-deps meta-reference | xargs -L1 uv pip install
llama stack build --distro meta-reference --image-type venv
llama stack run meta-reference
```

View file

@ -20,8 +20,7 @@ RAG enables your applications to reference and recall information from external
In one terminal, start the Llama Stack server:
```bash
llama stack list-deps starter | xargs -L1 uv pip install
llama stack run starter
uv run llama stack build --distro starter --image-type venv --run
```
### 2. Connect with OpenAI Client
@ -88,19 +87,18 @@ Llama Stack provides OpenAI-compatible RAG capabilities through:
To enable automatic vector store creation without specifying embedding models, configure a default embedding model in your run.yaml like so:
```yaml
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
models:
- model_id: nomic-ai/nomic-embed-text-v1.5
provider_id: inline::sentence-transformers
metadata:
embedding_dimension: 768
default_configured: true
```
With this configuration:
- `client.vector_stores.create()` works without requiring embedding model or provider parameters
- The system automatically uses the default vector store provider (`faiss`) when multiple providers are available
- The system automatically uses the default embedding model (`sentence-transformers/nomic-ai/nomic-embed-text-v1.5`) for any newly created vector store
- The `default_provider_id` specifies which vector storage backend to use
- The `default_embedding_model` specifies both the inference provider and model for embeddings
- `client.vector_stores.create()` works without requiring embedding model parameters
- The system automatically uses the default model and its embedding dimension for any newly created vector store
- Only one model can be marked as `default_configured: true`
## Vector Store Operations
@ -109,15 +107,14 @@ With this configuration:
You can create vector stores with automatic or explicit embedding model selection:
```python
# Automatic - uses default configured embedding model and vector store provider
# Automatic - uses default configured embedding model
vs = client.vector_stores.create()
# Explicit - specify embedding model and/or provider when you need specific ones
# Explicit - specify embedding model when you need a specific one
vs = client.vector_stores.create(
extra_body={
"provider_id": "faiss", # Optional: specify vector store provider
"embedding_model": "sentence-transformers/nomic-ai/nomic-embed-text-v1.5",
"embedding_dimension": 768 # Optional: will be auto-detected if not provided
"embedding_model": "nomic-ai/nomic-embed-text-v1.5",
"embedding_dimension": 768
}
)
```

View file

@ -62,10 +62,6 @@ The new `/v2` API must be introduced alongside the existing `/v1` API and run in
When a `/v2` API is introduced, a clear and generous deprecation policy for the `/v1` API must be published simultaneously. This policy must outline the timeline for the eventual removal of the `/v1` API, giving users ample time to migrate.
### Deprecated APIs
Deprecated APIs are those that are no longer actively maintained or supported. Depreated APIs are marked with the flag `deprecated = True` in the OpenAPI spec. These APIs will be removed in a future release.
### API Stability vs. Provider Stability
The leveling introduced in this document relates to the stability of the API and not specifically the providers within the API.

View file

@ -158,16 +158,17 @@ under the LICENSE file in the root directory of this source tree.
Some tips about common tasks you work on while contributing to Llama Stack:
### Setup for development
### Using `llama stack build`
Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands.
Example:
```bash
cd work/
git clone https://github.com/meta-llama/llama-stack.git
cd llama-stack
uv run llama stack list-deps <distro-name> | xargs -L1 uv pip install
# (Optional) If you are developing the llama-stack-client-python package, you can add it as an editable package.
git clone https://github.com/meta-llama/llama-stack-client-python.git
uv add --editable ../llama-stack-client-python
cd llama-stack
LLAMA_STACK_DIR=$(pwd) LLAMA_STACK_CLIENT_DIR=../llama-stack-client-python llama stack build --distro <...>
```
### Updating distribution configurations

View file

@ -67,7 +67,7 @@ def get_base_url(self) -> str:
## Testing the Provider
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, install its dependencies with `llama stack list-deps together | xargs -L1 uv pip install`.
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --distro together`.
### 1. Integration Testing

View file

@ -5,80 +5,225 @@ sidebar_label: Build your own Distribution
sidebar_position: 3
---
This guide walks you through inspecting existing distributions, customising their configuration, and building runnable artefacts for your own deployment.
This guide will walk you through the steps to get started with building a Llama Stack distribution from scratch with your choice of API providers.
### Explore existing distributions
All first-party distributions live under `llama_stack/distributions/`. Each directory contains:
### Setting your log level
- `build.yaml` the distribution specification (providers, additional dependencies, optional external provider directories).
- `run.yaml` sample run configuration (when provided).
- Documentation fragments that power this site.
In order to specify the proper logging level users can apply the following environment variable `LLAMA_STACK_LOGGING` with the following format:
Browse that folder to understand available providers and copy a distribution to use as a starting point. When creating a new stack, duplicate an existing directory, rename it, and adjust the `build.yaml` file to match your requirements.
`LLAMA_STACK_LOGGING=server=debug;core=info`
Where each category in the following list:
- all
- core
- server
- router
- inference
- agents
- safety
- eval
- tools
- client
Can be set to any of the following log levels:
- debug
- info
- warning
- error
- critical
The default global log level is `info`. `all` sets the log level for all components.
A user can also set `LLAMA_STACK_LOG_FILE` which will pipe the logs to the specified path as well as to the terminal. An example would be: `export LLAMA_STACK_LOG_FILE=server.log`
### Llama Stack Build
In order to build your own distribution, we recommend you clone the `llama-stack` repository.
```
git clone git@github.com:meta-llama/llama-stack.git
cd llama-stack
pip install -e .
```
Use the CLI to build your distribution.
The main points to consider are:
1. **Image Type** - Do you want a venv environment or a Container (eg. Docker)
2. **Template** - Do you want to use a template to build your distribution? or start from scratch ?
3. **Config** - Do you want to use a pre-existing config file to build your distribution?
```
llama stack build -h
usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--distro DISTRIBUTION] [--list-distros] [--image-type {container,venv}] [--image-name IMAGE_NAME] [--print-deps-only]
[--run] [--providers PROVIDERS]
Build a Llama stack container
options:
-h, --help show this help message and exit
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to
enter information interactively (default: None)
--template TEMPLATE (deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default:
None)
--distro DISTRIBUTION, --distribution DISTRIBUTION
Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default: None)
--list-distros, --list-distributions
Show the available distributions for building a Llama Stack distribution (default: False)
--image-type {container,venv}
Image Type to use for the build. If not specified, will use the image type from the template config. (default: None)
--image-name IMAGE_NAME
[for image-type=container|venv] Name of the virtual environment to use for the build. If not specified, currently active environment will be used if found. (default:
None)
--print-deps-only Print the dependencies for the stack only, without building the stack (default: False)
--run Run the stack after building using the same image type, name, and other applicable arguments (default: False)
--providers PROVIDERS
Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per
API. (default: None)
```
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
<Tabs>
<TabItem value="container" label="Building a container">
<TabItem value="template" label="Building from a template">
To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
Use the Containerfile at `containers/Containerfile`, which installs `llama-stack`, resolves distribution dependencies via `llama stack list-deps`, and sets the entrypoint to `llama stack run`.
```bash
docker build . \
-f containers/Containerfile \
--build-arg DISTRO_NAME=starter \
--tag llama-stack:starter
The following command will allow you to see the available templates and their corresponding providers.
```
llama stack build --list-templates
```
Handy build arguments:
```
------------------------------+-----------------------------------------------------------------------------+
| Template Name | Description |
+------------------------------+-----------------------------------------------------------------------------+
| watsonx | Use watsonx for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| vllm-gpu | Use a built-in vLLM engine for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| together | Use Together.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| tgi | Use (an external) TGI server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| starter | Quick start template for running Llama Stack with several popular providers |
+------------------------------+-----------------------------------------------------------------------------+
| sambanova | Use SambaNova for running LLM inference and safety |
+------------------------------+-----------------------------------------------------------------------------+
| remote-vllm | Use (an external) vLLM server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| postgres-demo | Quick start template for running Llama Stack with several popular providers |
+------------------------------+-----------------------------------------------------------------------------+
| passthrough | Use Passthrough hosted llama-stack endpoint for LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| open-benchmark | Distribution for running open benchmarks |
+------------------------------+-----------------------------------------------------------------------------+
| ollama | Use (an external) Ollama server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| nvidia | Use NVIDIA NIM for running LLM inference, evaluation and safety |
+------------------------------+-----------------------------------------------------------------------------+
| meta-reference-gpu | Use Meta Reference for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| llama_api | Distribution for running e2e tests in CI |
+------------------------------+-----------------------------------------------------------------------------+
| hf-serverless | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| hf-endpoint | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| groq | Use Groq for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| fireworks | Use Fireworks.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| experimental-post-training | Experimental template for post training |
+------------------------------+-----------------------------------------------------------------------------+
| dell | Dell's distribution of Llama Stack. TGI inference via Dell's custom |
| | container |
+------------------------------+-----------------------------------------------------------------------------+
| ci-tests | Distribution for running e2e tests in CI |
+------------------------------+-----------------------------------------------------------------------------+
| cerebras | Use Cerebras for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| bedrock | Use AWS Bedrock for running LLM inference and safety |
+------------------------------+-----------------------------------------------------------------------------+
```
- `DISTRO_NAME` distribution directory name (defaults to `starter`).
- `RUN_CONFIG_PATH` absolute path inside the build context for a run config that should be baked into the image (e.g. `/workspace/run.yaml`).
- `INSTALL_MODE=editable` install the repository copied into `/workspace` with `uv pip install -e`. Pair it with `--build-arg LLAMA_STACK_DIR=/workspace`.
- `LLAMA_STACK_CLIENT_DIR` optional editable install of the Python client.
- `PYPI_VERSION` / `TEST_PYPI_VERSION` pin specific releases when not using editable installs.
- `KEEP_WORKSPACE=1` retain `/workspace` in the final image if you need to access additional files (such as sample configs or provider bundles).
You may then pick a template to build your distribution with providers fitted to your liking.
Make sure any custom `build.yaml`, run configs, or provider directories you reference are included in the Docker build context so the Containerfile can read them.
For example, to build a distribution with TGI as the inference provider, you can run:
```
$ llama stack build --distro starter
...
You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml`
```
```{tip}
The generated `run.yaml` file is a starting point for your configuration. For comprehensive guidance on customizing it for your specific needs, infrastructure, and deployment scenarios, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md).
```
</TabItem>
<TabItem value="external" label="Building with external providers">
<TabItem value="scratch" label="Building from Scratch">
External providers live outside the main repository but can be bundled by pointing `external_providers_dir` to a directory that contains your provider packages.
If the provided templates do not fit your use case, you could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
1. Copy providers into the build context, for example `cp -R path/to/providers providers.d`.
2. Update `build.yaml` with the directory and provider entries.
3. Adjust run configs to use the in-container path (usually `/.llama/providers.d`). Pass `--build-arg RUN_CONFIG_PATH=/workspace/run.yaml` if you want to bake the config.
It would be best to start with a template and understand the structure of the config file and the various concepts ( APIS, providers, resources, etc.) before starting from scratch.
```
llama stack build
Example `build.yaml` excerpt for a custom Ollama provider:
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
> Enter the image type you want your Llama Stack to be built as (container or venv): venv
Llama Stack is composed of several APIs working together. Let's select
the provider types (implementations) you want to use for these APIs.
Tip: use <TAB> to see options for the providers.
> Enter provider for API inference: inline::meta-reference
> Enter provider for API safety: inline::llama-guard
> Enter provider for API agents: inline::meta-reference
> Enter provider for API memory: inline::faiss
> Enter provider for API datasetio: inline::meta-reference
> Enter provider for API scoring: inline::meta-reference
> Enter provider for API eval: inline::meta-reference
> Enter provider for API telemetry: inline::meta-reference
> (Optional) Enter a short description for your Llama Stack:
You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml`
```
</TabItem>
<TabItem value="config" label="Building from a pre-existing build config file">
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
- The config file will be of contents like the ones in `llama_stack/distributions/*build.yaml`.
```
llama stack build --config llama_stack/distributions/starter/build.yaml
```
</TabItem>
<TabItem value="external" label="Building with External Providers">
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently or use community-provided providers.
To build a distribution with external providers, you need to:
1. Configure the `external_providers_dir` in your build configuration file:
```yaml
# Example my-external-stack.yaml with external providers
version: '2'
distribution_spec:
description: Custom distro for CI tests
providers:
inference:
- remote::custom_ollama
external_providers_dir: /workspace/providers.d
```
Inside `providers.d/custom_ollama/provider.py`, define `get_provider_spec()` so the CLI can discover dependencies:
```python
from llama_stack.providers.datatypes import ProviderSpec
def get_provider_spec() -> ProviderSpec:
return ProviderSpec(
provider_type="remote::custom_ollama",
module="llama_stack_ollama_provider",
config_class="llama_stack_ollama_provider.config.OllamaImplConfig",
pip_packages=[
"ollama",
"aiohttp",
"llama-stack-provider-ollama",
],
)
- remote::custom_ollama
# Add more providers as needed
image_type: container
image_name: ci-test
# Path to external provider implementations
external_providers_dir: ~/.llama/providers.d
```
Here's an example for a custom Ollama provider:
@ -87,9 +232,9 @@ Here's an example for a custom Ollama provider:
adapter:
adapter_type: custom_ollama
pip_packages:
- ollama
- aiohttp
- llama-stack-provider-ollama # This is the provider package
- ollama
- aiohttp
- llama-stack-provider-ollama # This is the provider package
config_class: llama_stack_ollama_provider.config.OllamaImplConfig
module: llama_stack_ollama_provider
api_dependencies: []
@ -100,22 +245,53 @@ The `pip_packages` section lists the Python packages required by the provider, a
provider package itself. The package must be available on PyPI or can be provided from a local
directory or a git repository (git must be installed on the build environment).
For deeper guidance, see the [External Providers documentation](../providers/external/).
2. Build your distribution using the config file:
```
llama stack build --config my-external-stack.yaml
```
For more information on external providers, including directory structure, provider types, and implementation requirements, see the [External Providers documentation](../providers/external/).
</TabItem>
</Tabs>
<TabItem value="container" label="Building Container">
### Run your stack server
:::tip Podman Alternative
Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
:::
After building the image, launch it directly with Docker or Podman—the entrypoint calls `llama stack run` using the baked distribution or the bundled run config:
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.
```
llama stack build --distro starter --image-type container
```
```
$ llama stack build --distro starter --image-type container
...
Containerfile created successfully in /tmp/tmp.viA3a3Rdsg/ContainerfileFROM python:3.10-slim
...
```
You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml`
```
Now set some environment variables for the inference model ID and Llama Stack Port and create a local directory to mount into the container's file system.
```bash
export INFERENCE_MODEL="llama3.2:3b"
export LLAMA_STACK_PORT=8321
mkdir -p ~/.llama
```
After this step is successful, you should be able to find the built container image and test it with the below Docker command:
```
docker run -d \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-e INFERENCE_MODEL=$INFERENCE_MODEL \
-e OLLAMA_URL=http://host.docker.internal:11434 \
llama-stack:starter \
localhost/distribution-ollama:dev \
--port $LLAMA_STACK_PORT
```
@ -135,14 +311,131 @@ Here are the docker flags and their uses:
* `--port $LLAMA_STACK_PORT`: Port number for the server to listen on
</TabItem>
</Tabs>
If you prepared a custom run config, mount it into the container and reference it explicitly:
### Running your Stack server
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack build` step.
```bash
docker run \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $(pwd)/run.yaml:/app/run.yaml \
llama-stack:starter \
/app/run.yaml
```
llama stack run -h
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME]
[--image-type {venv}] [--enable-ui]
[config | distro]
Start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
positional arguments:
config | distro Path to config file to use for the run or name of known distro (`llama stack list` for a list). (default: None)
options:
-h, --help show this help message and exit
--port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321)
--image-name IMAGE_NAME
[DEPRECATED] This flag is no longer supported. Please activate your virtual environment before running. (default: None)
--image-type {venv}
[DEPRECATED] This flag is no longer supported. Please activate your virtual environment before running. (default: None)
--enable-ui Start the UI server (default: False)
```
**Note:** Container images built with `llama stack build --image-type container` cannot be run using `llama stack run`. Instead, they must be run directly using Docker or Podman commands as shown in the container building section above.
```
# Start using template name
llama stack run tgi
# Start using config file
llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
```
```
$ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
Serving API inspect
GET /health
GET /providers/list
GET /routes/list
Serving API inference
POST /inference/chat_completion
POST /inference/completion
POST /inference/embeddings
...
Serving API agents
POST /agents/create
POST /agents/session/create
POST /agents/turn/create
POST /agents/delete
POST /agents/session/delete
POST /agents/session/get
POST /agents/step/get
POST /agents/turn/get
Listening on ['::', '0.0.0.0']:8321
INFO: Started server process [2935911]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
```
### Listing Distributions
Using the list command, you can view all existing Llama Stack distributions, including stacks built from templates, from scratch, or using custom configuration files.
```
llama stack list -h
usage: llama stack list [-h]
list the build stacks
options:
-h, --help show this help message and exit
```
Example Usage
```
llama stack list
```
```
------------------------------+-----------------------------------------------------------------+--------------+------------+
| Stack Name | Path | Build Config | Run Config |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| together | ~/.llama/distributions/together | Yes | No |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| bedrock | ~/.llama/distributions/bedrock | Yes | No |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| starter | ~/.llama/distributions/starter | Yes | Yes |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| remote-vllm | ~/.llama/distributions/remote-vllm | Yes | Yes |
+------------------------------+-----------------------------------------------------------------------------+--------------+
```
### Removing a Distribution
Use the remove command to delete a distribution you've previously built.
```
llama stack rm -h
usage: llama stack rm [-h] [--all] [name]
Remove the build stack
positional arguments:
name Name of the stack to delete (default: None)
options:
-h, --help show this help message and exit
--all, -a Delete all stacks (use with caution) (default: False)
```
Example
```
llama stack rm llamastack-test
```
To keep your environment organized and avoid clutter, consider using `llama stack list` to review old or unused distributions and `llama stack rm <name>` to delete them when they're no longer needed.
### Troubleshooting
If you encounter any issues, ask questions in our discord or search through our [GitHub Issues](https://github.com/meta-llama/llama-stack/issues), or file an new issue.

View file

@ -44,32 +44,18 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence:
agent_state:
backend: kv_default
namespace: agents
responses:
backend: sql_default
table_name: responses
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/sqlstore.db
references:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/registry.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -12,7 +12,7 @@ This avoids the overhead of setting up a server.
```bash
# setup
uv pip install llama-stack
llama stack list-deps starter | xargs -L1 uv pip install
llama stack build --distro starter --image-type venv
```
```python

View file

@ -1,155 +1,56 @@
apiVersion: v1
data:
stack_run_config.yaml: |
version: '2'
image_name: kubernetes-demo
apis:
- agents
- inference
- files
- safety
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: vllm-safety
provider_type: remote::vllm
config:
url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:+}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:+}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
references:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
models:
- metadata:
embedding_dimension: 768
model_id: nomic-embed-text-v1.5
provider_id: sentence-transformers
model_type: embedding
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
- metadata: {}
model_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
provider_id: vllm-safety
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321
auth:
provider_config:
type: github_token
stack_run_config.yaml: "version: '2'\nimage_name: kubernetes-demo\napis:\n- agents\n-
inference\n- files\n- safety\n- telemetry\n- tool_runtime\n- vector_io\nproviders:\n
\ inference:\n - provider_id: vllm-inference\n provider_type: remote::vllm\n
\ config:\n url: ${env.VLLM_URL:=http://localhost:8000/v1}\n max_tokens:
${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n tls_verify:
${env.VLLM_TLS_VERIFY:=true}\n - provider_id: vllm-safety\n provider_type:
remote::vllm\n config:\n url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}\n
\ max_tokens: ${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n
\ tls_verify: ${env.VLLM_TLS_VERIFY:=true}\n - provider_id: sentence-transformers\n
\ provider_type: inline::sentence-transformers\n config: {}\n vector_io:\n
\ - provider_id: ${env.ENABLE_CHROMADB:+chromadb}\n provider_type: remote::chromadb\n
\ config:\n url: ${env.CHROMADB_URL:=}\n kvstore:\n type: postgres\n
\ host: ${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n
\ db: ${env.POSTGRES_DB:=llamastack}\n user: ${env.POSTGRES_USER:=llamastack}\n
\ password: ${env.POSTGRES_PASSWORD:=llamastack}\n files:\n - provider_id:
meta-reference-files\n provider_type: inline::localfs\n config:\n storage_dir:
${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}\n metadata_store:\n
\ type: sqlite\n db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
\ \n safety:\n - provider_id: llama-guard\n provider_type: inline::llama-guard\n
\ config:\n excluded_categories: []\n agents:\n - provider_id: meta-reference\n
\ provider_type: inline::meta-reference\n config:\n persistence_store:\n
\ type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n port:
${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user:
${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n
\ responses_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n
\ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n
\ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n
\ telemetry:\n - provider_id: meta-reference\n provider_type: inline::meta-reference\n
\ config:\n service_name: \"${env.OTEL_SERVICE_NAME:=\\u200B}\"\n sinks:
${env.TELEMETRY_SINKS:=console}\n tool_runtime:\n - provider_id: brave-search\n
\ provider_type: remote::brave-search\n config:\n api_key: ${env.BRAVE_SEARCH_API_KEY:+}\n
\ max_results: 3\n - provider_id: tavily-search\n provider_type: remote::tavily-search\n
\ config:\n api_key: ${env.TAVILY_SEARCH_API_KEY:+}\n max_results:
3\n - provider_id: rag-runtime\n provider_type: inline::rag-runtime\n config:
{}\n - provider_id: model-context-protocol\n provider_type: remote::model-context-protocol\n
\ config: {}\nmetadata_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n
\ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user:
${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n
\ table_name: llamastack_kvstore\ninference_store:\n type: postgres\n host:
${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n
\ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\nmodels:\n-
metadata:\n embedding_dimension: 384\n model_id: all-MiniLM-L6-v2\n provider_id:
sentence-transformers\n model_type: embedding\n- metadata: {}\n model_id: ${env.INFERENCE_MODEL}\n
\ provider_id: vllm-inference\n model_type: llm\n- metadata: {}\n model_id:
${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\n provider_id: vllm-safety\n
\ model_type: llm\nshields:\n- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\nvector_dbs:
[]\ndatasets: []\nscoring_fns: []\nbenchmarks: []\ntool_groups:\n- toolgroup_id:
builtin::websearch\n provider_id: tavily-search\n- toolgroup_id: builtin::rag\n
\ provider_id: rag-runtime\nserver:\n port: 8321\n auth:\n provider_config:\n
\ type: github_token\n"
kind: ConfigMap
metadata:
creationTimestamp: null
name: llama-stack-config

View file

@ -93,30 +93,21 @@ providers:
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
references:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 768

View file

@ -59,7 +59,7 @@ Start a Llama Stack server on localhost. Here is an example of how you can do th
uv venv starter --python 3.12
source starter/bin/activate # On Windows: starter\Scripts\activate
pip install --no-cache llama-stack==0.2.2
llama stack list-deps starter | xargs -L1 uv pip install
llama stack build --distro starter --image-type venv
export FIREWORKS_API_KEY=<SOME_KEY>
llama stack run starter --port 5050
```

View file

@ -166,10 +166,10 @@ docker run \
### Via venv
Install the distribution dependencies before launching:
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack list-deps dell | xargs -L1 uv pip install
llama stack build --distro dell --image-type venv
INFERENCE_MODEL=$INFERENCE_MODEL \
DEH_URL=$DEH_URL \
CHROMA_URL=$CHROMA_URL \

View file

@ -81,10 +81,10 @@ docker run \
### Via venv
Make sure you have the Llama Stack CLI available.
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install
llama stack build --distro meta-reference-gpu --image-type venv
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
llama stack run distributions/meta-reference-gpu/run.yaml \
--port 8321

View file

@ -136,11 +136,11 @@ docker run \
### Via venv
If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment.
If you've set up your local development environment, you can also build the image using your local virtual environment.
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
llama stack list-deps nvidia | xargs -L1 uv pip install
llama stack build --distro nvidia --image-type venv
NVIDIA_API_KEY=$NVIDIA_API_KEY \
INFERENCE_MODEL=$INFERENCE_MODEL \
llama stack run ./run.yaml \

View file

@ -169,11 +169,7 @@ docker run \
Ensure you have configured the starter distribution using the environment variables explained above.
```bash
# Install dependencies for the starter distribution
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run the server
uv run --with llama-stack llama stack run starter
uv run --with llama-stack llama stack build --distro starter --image-type venv --run
```
## Example Usage

View file

@ -23,17 +23,6 @@ Another simple way to start interacting with Llama Stack is to just spin up a co
If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](../deploying/kubernetes_deployment) for more details.
## Configure logging
Control log output via environment variables before starting the server.
- `LLAMA_STACK_LOGGING` sets per-component levels, e.g. `LLAMA_STACK_LOGGING=server=debug;core=info`.
- Supported categories: `all`, `core`, `server`, `router`, `inference`, `agents`, `safety`, `eval`, `tools`, `client`.
- Levels: `debug`, `info`, `warning`, `error`, `critical` (default is `info`). Use `all=<level>` to apply globally.
- `LLAMA_STACK_LOG_FILE=/path/to/log` mirrors logs to a file while still printing to stdout.
Export these variables prior to running `llama stack run`, launching a container, or starting the server through any other pathway.
```{toctree}
:maxdepth: 1
:hidden:

View file

@ -4,24 +4,65 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
import io, requests
from openai import OpenAI
vector_db_id = "my_demo_vector_db"
client = LlamaStackClient(base_url="http://localhost:8321")
url="https://www.paulgraham.com/greatwork.html"
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
models = client.models.list()
vs = client.vector_stores.create()
response = requests.get(url)
pseudo_file = io.BytesIO(str(response.content).encode('utf-8'))
uploaded_file = client.files.create(file=(url, pseudo_file, "text/html"), purpose="assistants")
client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file.id)
# Select the first LLM and first embedding models
model_id = next(m for m in models if m.model_type == "llm").identifier
embedding_model_id = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = em.metadata["embedding_dimension"]
resp = client.responses.create(
model="openai/gpt-4o",
input="How do you do great work? Use the existing knowledge_search tool.",
tools=[{"type": "file_search", "vector_store_ids": [vs.id]}],
include=["file_search_call.results"],
vector_db = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
provider_id="faiss",
)
vector_db_id = vector_db.identifier
source = "https://www.paulgraham.com/greatwork.html"
print("rag_tool> Ingesting document:", source)
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={},
)
client.tool_runtime.rag_tool.insert(
documents=[document],
vector_db_id=vector_db_id,
chunk_size_in_tokens=100,
)
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": [vector_db_id]},
}
],
)
print(resp)
prompt = "How do you do great work?"
print("prompt>", prompt)
use_stream = True
response = agent.create_turn(
messages=[{"role": "user", "content": prompt}],
session_id=agent.create_session("rag_session"),
stream=use_stream,
)
# Only call `AgentEventLogger().log(response)` for streaming responses.
if use_stream:
for log in AgentEventLogger().log(response):
log.print()
else:
print(response)

View file

@ -58,19 +58,15 @@ Llama Stack is a server that exposes multiple APIs, you connect with it using th
<Tabs>
<TabItem value="venv" label="Using venv">
You can use Python to install dependencies and run the Llama Stack server, which is useful for testing and development.
You can use Python to build and run the Llama Stack server, which is useful for testing and development.
Llama Stack uses a [YAML configuration file](../distributions/configuration) to specify the stack setup,
which defines the providers and their settings. The generated configuration serves as a starting point that you can [customize for your specific needs](../distributions/customizing_run_yaml).
Now let's install dependencies and run the Llama Stack config for Ollama.
Now let's build and run the Llama Stack config for Ollama.
We use `starter` as template. By default all providers are disabled, this requires enable ollama by passing environment variables.
```bash
# Install dependencies for the starter distribution
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run the server
llama stack run starter
llama stack build --distro starter --image-type venv --run
```
</TabItem>
<TabItem value="container" label="Using a Container">
@ -308,7 +304,7 @@ stream = agent.create_turn(
for event in AgentEventLogger().log(stream):
event.print()
```
#### ii. Run the Script
### ii. Run the Script
Let's run the script using `uv`
```bash
uv run python agent.py

View file

@ -24,62 +24,111 @@ ollama run llama3.2:3b --keepalive 60m
#### Step 2: Run the Llama Stack server
We will use `uv` to install dependencies and run the Llama Stack server.
We will use `uv` to run the Llama Stack server.
```bash
# Install dependencies for the starter distribution
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run the server
OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter
OLLAMA_URL=http://localhost:11434 \
uv run --with llama-stack llama stack build --distro starter --image-type venv --run
```
#### Step 3: Run the demo
Now open up a new terminal and copy the following script into a file named `demo_script.py`.
```python
import io, requests
from openai import OpenAI
```python title="demo_script.py"
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
url="https://www.paulgraham.com/greatwork.html"
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
vs = client.vector_stores.create()
response = requests.get(url)
pseudo_file = io.BytesIO(str(response.content).encode('utf-8'))
uploaded_file = client.files.create(file=(url, pseudo_file, "text/html"), purpose="assistants")
client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file.id)
vector_db_id = "my_demo_vector_db"
client = LlamaStackClient(base_url="http://localhost:8321")
resp = client.responses.create(
model="openai/gpt-4o",
input="How do you do great work? Use the existing knowledge_search tool.",
tools=[{"type": "file_search", "vector_store_ids": [vs.id]}],
include=["file_search_call.results"],
models = client.models.list()
# Select the first LLM and first embedding models
model_id = next(m for m in models if m.model_type == "llm").identifier
embedding_model_id = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = em.metadata["embedding_dimension"]
vector_db = client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=embedding_dimension,
provider_id="faiss",
)
vector_db_id = vector_db.identifier
source = "https://www.paulgraham.com/greatwork.html"
print("rag_tool> Ingesting document:", source)
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={},
)
client.tool_runtime.rag_tool.insert(
documents=[document],
vector_db_id=vector_db_id,
chunk_size_in_tokens=100,
)
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": [vector_db_id]},
}
],
)
prompt = "How do you do great work?"
print("prompt>", prompt)
use_stream = True
response = agent.create_turn(
messages=[{"role": "user", "content": prompt}],
session_id=agent.create_session("rag_session"),
stream=use_stream,
)
# Only call `AgentEventLogger().log(response)` for streaming responses.
if use_stream:
for log in AgentEventLogger().log(response):
log.print()
else:
print(response)
```
We will use `uv` to run the script
```
uv run --with llama-stack-client,fire,requests demo_script.py
```
And you should see output like below.
```python
>print(resp.output[1].content[0].text)
To do great work, consider the following principles:
1. **Follow Your Interests**: Engage in work that genuinely excites you. If you find an area intriguing, pursue it without being overly concerned about external pressures or norms. You should create things that you would want for yourself, as this often aligns with what others in your circle might want too.
2. **Work Hard on Ambitious Projects**: Ambition is vital, but it should be tempered by genuine interest. Instead of detailed planning for the future, focus on exciting projects that keep your options open. This approach, known as "staying upwind," allows for adaptability and can lead to unforeseen achievements.
3. **Choose Quality Colleagues**: Collaborating with talented colleagues can significantly affect your own work. Seek out individuals who offer surprising insights and whom you admire. The presence of good colleagues can elevate the quality of your work and inspire you.
4. **Maintain High Morale**: Your attitude towards work and life affects your performance. Cultivating optimism and viewing yourself as lucky rather than victimized can boost your productivity. Its essential to care for your physical health as well since it directly impacts your mental faculties and morale.
5. **Be Consistent**: Great work often comes from cumulative effort. Daily progress, even in small amounts, can result in substantial achievements over time. Emphasize consistency and make the work engaging, as this reduces the perceived burden of hard labor.
6. **Embrace Curiosity**: Curiosity is a driving force that can guide you in selecting fields of interest, pushing you to explore uncharted territories. Allow it to shape your work and continually seek knowledge and insights.
By focusing on these aspects, you can create an environment conducive to great work and personal fulfillment.
```
rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html
prompt> How do you do great work?
inference> [knowledge_search(query="What is the key to doing great work")]
tool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'}
tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text="Result 1:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 2:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 3:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 4:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 5:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')]
inference> Based on the search results, it seems that doing great work means doing something important so well that you expand people's ideas of what's possible. However, there is no clear threshold for importance, and it can be difficult to judge at the time.
To further clarify, I would suggest that doing great work involves:
* Completing tasks with high quality and attention to detail
* Expanding on existing knowledge or ideas
* Making a positive impact on others through your work
* Striving for excellence and continuous improvement
Ultimately, great work is about making a meaningful contribution and leaving a lasting impression.
```
Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳
:::tip HuggingFace access

View file

@ -14,18 +14,16 @@ Meta's reference implementation of an agent system that can use tools, access ve
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `persistence` | `<class 'inline.agents.meta_reference.config.AgentPersistenceConfig'>` | No | | |
| `persistence_store` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
| `responses_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/responses_store.db
```

View file

@ -14,7 +14,7 @@ Reference implementation of batches API with KVStore persistence.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Configuration for the key-value store backend. |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Configuration for the key-value store backend. |
| `max_concurrent_batches` | `<class 'int'>` | No | 1 | Maximum number of concurrent batches to process simultaneously. |
| `max_concurrent_requests_per_batch` | `<class 'int'>` | No | 10 | Maximum number of concurrent requests to process per batch. |
@ -22,6 +22,6 @@ Reference implementation of batches API with KVStore persistence.
```yaml
kvstore:
namespace: batches
backend: kv_default
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/batches.db
```

View file

@ -14,12 +14,12 @@ Local filesystem-based dataset I/O provider for reading and writing datasets to
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
kvstore:
namespace: datasetio::localfs
backend: kv_default
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/localfs_datasetio.db
```

View file

@ -14,12 +14,12 @@ HuggingFace datasets provider for accessing and managing datasets from the Huggi
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
kvstore:
namespace: datasetio::huggingface
backend: kv_default
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/huggingface_datasetio.db
```

View file

@ -1,7 +1,5 @@
---
description: "Evaluations
Llama Stack Evaluation API for running evaluations on model and agent candidates."
description: "Llama Stack Evaluation API for running evaluations on model and agent candidates."
sidebar_label: Eval
title: Eval
---
@ -10,8 +8,6 @@ title: Eval
## Overview
Evaluations
Llama Stack Evaluation API for running evaluations on model and agent candidates.
Llama Stack Evaluation API for running evaluations on model and agent candidates.
This section contains documentation for all available providers for the **eval** API.

View file

@ -14,12 +14,12 @@ Meta's reference implementation of evaluation tasks with support for multiple la
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
kvstore:
namespace: eval
backend: kv_default
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/meta_reference_eval.db
```

View file

@ -240,6 +240,6 @@ additional_pip_packages:
- sqlalchemy[asyncio]
```
No other steps are required beyond installing dependencies with `llama stack list-deps <distro> | xargs -L1 uv pip install` and then running `llama stack run`. The CLI will use `module` to install the provider dependencies, retrieve the spec, etc.
No other steps are required other than `llama stack build` and `llama stack run`. The build process will use `module` to install all of the provider dependencies, retrieve the spec, etc.
The provider will now be available in Llama Stack with the type `remote::ramalama`.

View file

@ -15,7 +15,7 @@ Local filesystem-based file storage provider for managing files and documents lo
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `storage_dir` | `<class 'str'>` | No | | Directory to store uploaded files |
| `metadata_store` | `<class 'llama_stack.core.storage.datatypes.SqlStoreReference'>` | No | | SQL store configuration for file metadata |
| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata |
| `ttl_secs` | `<class 'int'>` | No | 31536000 | |
## Sample Configuration
@ -23,6 +23,6 @@ Local filesystem-based file storage provider for managing files and documents lo
```yaml
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/dummy/files}
metadata_store:
table_name: files_metadata
backend: sql_default
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/files_metadata.db
```

View file

@ -20,7 +20,7 @@ AWS S3-based file storage provider for scalable cloud file management with metad
| `aws_secret_access_key` | `str \| None` | No | | AWS secret access key (optional if using IAM roles) |
| `endpoint_url` | `str \| None` | No | | Custom S3 endpoint URL (for MinIO, LocalStack, etc.) |
| `auto_create_bucket` | `<class 'bool'>` | No | False | Automatically create the S3 bucket if it doesn't exist |
| `metadata_store` | `<class 'llama_stack.core.storage.datatypes.SqlStoreReference'>` | No | | SQL store configuration for file metadata |
| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata |
## Sample Configuration
@ -32,6 +32,6 @@ aws_secret_access_key: ${env.AWS_SECRET_ACCESS_KEY:=}
endpoint_url: ${env.S3_ENDPOINT_URL:=}
auto_create_bucket: ${env.S3_AUTO_CREATE_BUCKET:=false}
metadata_store:
table_name: s3_files_metadata
backend: sql_default
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/s3_files_metadata.db
```

View file

@ -79,13 +79,13 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
## Sample Configuration
```yaml
db_path: ${env.CHROMADB_PATH}
persistence:
namespace: vector_io::chroma
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_inline_registry.db
```

View file

@ -95,12 +95,12 @@ more details about Faiss in general.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
persistence:
namespace: vector_io::faiss
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db
```

View file

@ -14,14 +14,14 @@ Meta's reference implementation of a vector database.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
persistence:
namespace: vector_io::faiss
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db
```
## Deprecation Notice

View file

@ -17,14 +17,14 @@ Please refer to the remote provider documentation.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend (SQLite only for now) |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) |
| `consistency_level` | `<class 'str'>` | No | Strong | The consistency level of the Milvus server |
## Sample Configuration
```yaml
db_path: ${env.MILVUS_DB_PATH:=~/.llama/dummy}/milvus.db
persistence:
namespace: vector_io::milvus
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/milvus_registry.db
```

View file

@ -98,13 +98,13 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `path` | `<class 'str'>` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
path: ${env.QDRANT_PATH:=~/.llama/~/.llama/dummy}/qdrant.db
persistence:
namespace: vector_io::qdrant
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
```

View file

@ -408,13 +408,13 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | Path to the SQLite database file |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend (SQLite only for now) |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) |
## Sample Configuration
```yaml
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec_registry.db
```

View file

@ -17,15 +17,15 @@ Please refer to the sqlite-vec provider documentation.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `db_path` | `<class 'str'>` | No | | Path to the SQLite database file |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend (SQLite only for now) |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) |
## Sample Configuration
```yaml
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec_registry.db
```
## Deprecation Notice

View file

@ -78,13 +78,13 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `str \| None` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
## Sample Configuration
```yaml
url: ${env.CHROMADB_URL}
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_remote_registry.db
```

View file

@ -408,7 +408,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
| `uri` | `<class 'str'>` | No | | The URI of the Milvus server |
| `token` | `str \| None` | No | | The token of the Milvus server |
| `consistency_level` | `<class 'str'>` | No | Strong | The consistency level of the Milvus server |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
| `config` | `dict` | No | `{}` | This configuration allows additional fields to be passed through to the underlying Milvus client. See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general. |
:::note
@ -420,7 +420,7 @@ This configuration class accepts additional fields beyond those listed above. Yo
```yaml
uri: ${env.MILVUS_ENDPOINT}
token: ${env.MILVUS_TOKEN}
persistence:
namespace: vector_io::milvus_remote
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/milvus_remote_registry.db
```

View file

@ -218,7 +218,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
| `db` | `str \| None` | No | postgres | |
| `user` | `str \| None` | No | postgres | |
| `password` | `str \| None` | No | mysecretpassword | |
| `persistence` | `llama_stack.core.storage.datatypes.KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration
@ -228,7 +228,7 @@ port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB}
user: ${env.PGVECTOR_USER}
password: ${env.PGVECTOR_PASSWORD}
persistence:
namespace: vector_io::pgvector
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/pgvector_registry.db
```

View file

@ -26,13 +26,13 @@ Please refer to the inline provider documentation.
| `prefix` | `str \| None` | No | | |
| `timeout` | `int \| None` | No | | |
| `host` | `str \| None` | No | | |
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
api_key: ${env.QDRANT_API_KEY:=}
persistence:
namespace: vector_io::qdrant_remote
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
```

View file

@ -75,14 +75,14 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|-------|------|----------|---------|-------------|
| `weaviate_api_key` | `str \| None` | No | | The API key for the Weaviate instance |
| `weaviate_cluster_url` | `str \| None` | No | localhost:8080 | The URL of the Weaviate cluster |
| `persistence` | `llama_stack.core.storage.datatypes.KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration
```yaml
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
persistence:
namespace: vector_io::weaviate
backend: kv_default
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/weaviate_registry.db
```

View file

@ -32,6 +32,7 @@ Commands:
scoring_functions Manage scoring functions.
shields Manage safety shield services.
toolgroups Manage available tool groups.
vector_dbs Manage vector databases.
```
### `llama-stack-client configure`
@ -210,6 +211,53 @@ Unregister a model from distribution endpoint
llama-stack-client models unregister <model_id>
```
## Vector DB Management
Manage vector databases.
### `llama-stack-client vector_dbs list`
Show available vector dbs on distribution endpoint
```bash
llama-stack-client vector_dbs list
```
```
┏━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ provider_resource_id ┃ vector_db_type ┃ params ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ my_demo_vector_db │ faiss │ my_demo_vector_db │ │ embedding_dimension: 768 │
│ │ │ │ │ embedding_model: nomic-embed-text-v1.5 │
│ │ │ │ │ type: vector_db │
│ │ │ │ │ │
└──────────────────────────┴─────────────┴──────────────────────────┴────────────────┴───────────────────────────────────┘
```
### `llama-stack-client vector_dbs register`
Create a new vector db
```bash
llama-stack-client vector_dbs register <vector-db-id> [--provider-id <provider-id>] [--provider-vector-db-id <provider-vector-db-id>] [--embedding-model <embedding-model>] [--embedding-dimension <embedding-dimension>]
```
Required arguments:
- `VECTOR_DB_ID`: Vector DB ID
Optional arguments:
- `--provider-id`: Provider ID for the vector db
- `--provider-vector-db-id`: Provider's vector db ID
- `--embedding-model`: Embedding model to use. Default: `nomic-embed-text-v1.5`
- `--embedding-dimension`: Dimension of embeddings. Default: 768
### `llama-stack-client vector_dbs unregister`
Delete a vector db
```bash
llama-stack-client vector_dbs unregister <vector-db-id>
```
Required arguments:
- `VECTOR_DB_ID`: Vector DB ID
## Shield Management
Manage safety shield services.
### `llama-stack-client shields list`

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -2864,7 +2864,7 @@
}
],
"source": [
"!llama stack list-deps experimental-post-training | xargs -L1 uv pip install"
"!llama stack build --distro experimental-post-training --image-type venv --image-name __system__"
]
},
{

View file

@ -38,7 +38,7 @@
"source": [
"# NBVAL_SKIP\n",
"!pip install -U llama-stack\n",
"llama stack list-deps fireworks | xargs -L1 uv pip install\n"
"!UV_SYSTEM_PYTHON=1 llama stack build --distro fireworks --image-type venv"
]
},
{

File diff suppressed because it is too large Load diff

View file

@ -136,8 +136,7 @@
" \"\"\"Build and run LlamaStack server in one step using --run flag\"\"\"\n",
" log_file = open(\"llama_stack_server.log\", \"w\")\n",
" process = subprocess.Popen(\n",
" \"uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install\",\n",
" \"uv run --with llama-stack llama stack run starter\",\n",
" \"uv run --with llama-stack llama stack build --distro starter --image-type venv --run\",\n",
" shell=True,\n",
" stdout=log_file,\n",
" stderr=log_file,\n",
@ -173,7 +172,7 @@
"\n",
"def kill_llama_stack_server():\n",
" # Kill any existing llama stack server processes using pkill command\n",
" os.system(\"pkill -f llama_stack.core.server.server\")\n"
" os.system(\"pkill -f llama_stack.core.server.server\")"
]
},
{

View file

@ -105,8 +105,7 @@
" \"\"\"Build and run LlamaStack server in one step using --run flag\"\"\"\n",
" log_file = open(\"llama_stack_server.log\", \"w\")\n",
" process = subprocess.Popen(\n",
" \"uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install\",\n",
" \"uv run --with llama-stack llama stack run starter\",\n",
" \"uv run --with llama-stack llama stack build --distro starter --image-type venv --run\",\n",
" shell=True,\n",
" stdout=log_file,\n",
" stderr=log_file,\n",

View file

@ -92,7 +92,7 @@
"metadata": {},
"source": [
"```bash\n",
"uv run --with llama-stack llama stack list-deps nvidia | xargs -L1 uv pip install\n",
"LLAMA_STACK_DIR=$(pwd) llama stack build --distro nvidia --image-type venv\n",
"```"
]
},

View file

@ -81,7 +81,7 @@
"metadata": {},
"source": [
"```bash\n",
"uv run --with llama-stack llama stack list-deps nvidia | xargs -L1 uv pip install\n",
"LLAMA_STACK_DIR=$(pwd) llama stack build --distro nvidia --image-type venv\n",
"```"
]
},

View file

@ -30,5 +30,3 @@ fi
stack_dir=$(dirname $(dirname $THIS_DIR))
PYTHONPATH=$PYTHONPATH:$stack_dir \
python -m docs.openapi_generator.generate $(dirname $THIS_DIR)/static
cp $stack_dir/docs/static/stainless-llama-stack-spec.yaml $stack_dir/client-sdks/stainless/openapi.yml

View file

@ -1,399 +1,366 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "c1e7571c",
"metadata": {
"id": "c1e7571c"
},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n",
"\n",
"# Llama Stack - Building AI Applications\n",
"\n",
"<img src=\"https://llamastack.github.io/latest/_images/llama-stack.png\" alt=\"drawing\" width=\"500\"/>\n",
"\n",
"Get started with Llama Stack in minutes!\n",
"\n",
"[Llama Stack](https://github.com/meta-llama/llama-stack) is a stateful service with REST APIs to support the seamless transition of AI applications across different environments. You can build and test using a local server first and deploy to a hosted endpoint for production.\n",
"\n",
"In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/)\n",
"as the inference [provider](docs/source/providers/index.md#inference) for a Llama Model.\n"
]
},
{
"cell_type": "markdown",
"id": "4CV1Q19BDMVw",
"metadata": {
"id": "4CV1Q19BDMVw"
},
"source": [
"## Step 1: Install and setup"
]
},
{
"cell_type": "markdown",
"id": "K4AvfUAJZOeS",
"metadata": {
"id": "K4AvfUAJZOeS"
},
"source": [
"### 1.1. Install uv and test inference with Ollama\n",
"\n",
"We'll install [uv](https://docs.astral.sh/uv/) to setup the Python virtual environment, along with [colab-xterm](https://github.com/InfuseAI/colab-xterm) for running command-line tools, and [Ollama](https://ollama.com/download) as the inference provider."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a2d7b85",
"metadata": {},
"outputs": [],
"source": [
"%pip install uv llama_stack llama-stack-client\n",
"\n",
"## If running on Collab:\n",
"# !pip install colab-xterm\n",
"# %load_ext colabxterm\n",
"\n",
"!curl https://ollama.ai/install.sh | sh"
]
},
{
"cell_type": "markdown",
"id": "39fa584b",
"metadata": {},
"source": [
"### 1.2. Test inference with Ollama"
]
},
{
"cell_type": "markdown",
"id": "3bf81522",
"metadata": {},
"source": [
"Well now launch a terminal and run inference on a Llama model with Ollama to verify that the model is working correctly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7e8e0f1",
"metadata": {},
"outputs": [],
"source": [
"## If running on Colab:\n",
"# %xterm\n",
"\n",
"## To be ran in the terminal:\n",
"# ollama serve &\n",
"# ollama run llama3.2:3b --keepalive 60m"
]
},
{
"cell_type": "markdown",
"id": "f3c5f243",
"metadata": {},
"source": [
"If successful, you should see the model respond to a prompt.\n",
"\n",
"...\n",
"```\n",
">>> hi\n",
"Hello! How can I assist you today?\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "oDUB7M_qe-Gs",
"metadata": {
"id": "oDUB7M_qe-Gs"
},
"source": [
"## Step 2: Run the Llama Stack server\n",
"\n",
"In this showcase, we will start a Llama Stack server that is running locally."
]
},
{
"cell_type": "markdown",
"id": "732eadc6",
"metadata": {},
"source": [
"### 2.1. Setup the Llama Stack Server"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "J2kGed0R5PSf",
"metadata": {
"cells": [
{
"cell_type": "markdown",
"id": "c1e7571c",
"metadata": {
"id": "c1e7571c"
},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n",
"\n",
"# Llama Stack - Building AI Applications\n",
"\n",
"<img src=\"https://llamastack.github.io/latest/_images/llama-stack.png\" alt=\"drawing\" width=\"500\"/>\n",
"\n",
"Get started with Llama Stack in minutes!\n",
"\n",
"[Llama Stack](https://github.com/meta-llama/llama-stack) is a stateful service with REST APIs to support the seamless transition of AI applications across different environments. You can build and test using a local server first and deploy to a hosted endpoint for production.\n",
"\n",
"In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/)\n",
"as the inference [provider](docs/source/providers/index.md#inference) for a Llama Model.\n"
]
},
{
"cell_type": "markdown",
"id": "4CV1Q19BDMVw",
"metadata": {
"id": "4CV1Q19BDMVw"
},
"source": [
"## Step 1: Install and setup"
]
},
{
"cell_type": "markdown",
"id": "K4AvfUAJZOeS",
"metadata": {
"id": "K4AvfUAJZOeS"
},
"source": [
"### 1.1. Install uv and test inference with Ollama\n",
"\n",
"We'll install [uv](https://docs.astral.sh/uv/) to setup the Python virtual environment, along with [colab-xterm](https://github.com/InfuseAI/colab-xterm) for running command-line tools, and [Ollama](https://ollama.com/download) as the inference provider."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a2d7b85",
"metadata": {},
"outputs": [],
"source": [
"%pip install uv llama_stack llama-stack-client\n",
"\n",
"## If running on Collab:\n",
"# !pip install colab-xterm\n",
"# %load_ext colabxterm\n",
"\n",
"!curl https://ollama.ai/install.sh | sh"
]
},
{
"cell_type": "markdown",
"id": "39fa584b",
"metadata": {},
"source": [
"### 1.2. Test inference with Ollama"
]
},
{
"cell_type": "markdown",
"id": "3bf81522",
"metadata": {},
"source": [
"Well now launch a terminal and run inference on a Llama model with Ollama to verify that the model is working correctly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7e8e0f1",
"metadata": {},
"outputs": [],
"source": [
"## If running on Colab:\n",
"# %xterm\n",
"\n",
"## To be ran in the terminal:\n",
"# ollama serve &\n",
"# ollama run llama3.2:3b --keepalive 60m"
]
},
{
"cell_type": "markdown",
"id": "f3c5f243",
"metadata": {},
"source": [
"If successful, you should see the model respond to a prompt.\n",
"\n",
"...\n",
"```\n",
">>> hi\n",
"Hello! How can I assist you today?\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "oDUB7M_qe-Gs",
"metadata": {
"id": "oDUB7M_qe-Gs"
},
"source": [
"## Step 2: Run the Llama Stack server\n",
"\n",
"In this showcase, we will start a Llama Stack server that is running locally."
]
},
{
"cell_type": "markdown",
"id": "732eadc6",
"metadata": {},
"source": [
"### 2.1. Setup the Llama Stack Server"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "J2kGed0R5PSf",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "J2kGed0R5PSf",
"outputId": "2478ea60-8d35-48a1-b011-f233831740c5"
},
"outputs": [],
"source": [
"import os\n",
"import subprocess\n",
"\n",
"if \"UV_SYSTEM_PYTHON\" in os.environ:\n",
" del os.environ[\"UV_SYSTEM_PYTHON\"]\n",
"\n",
"# this command installs all the dependencies needed for the llama stack server with the ollama inference provider\n",
"!uv run --with llama-stack llama stack build --distro starter\n",
"\n",
"def run_llama_stack_server_background():\n",
" log_file = open(\"llama_stack_server.log\", \"w\")\n",
" process = subprocess.Popen(\n",
" f\"OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter\n",
" shell=True,\n",
" stdout=log_file,\n",
" stderr=log_file,\n",
" text=True\n",
" )\n",
"\n",
" print(f\"Starting Llama Stack server with PID: {process.pid}\")\n",
" return process\n",
"\n",
"def wait_for_server_to_start():\n",
" import requests\n",
" from requests.exceptions import ConnectionError\n",
" import time\n",
"\n",
" url = \"http://0.0.0.0:8321/v1/health\"\n",
" max_retries = 30\n",
" retry_interval = 1\n",
"\n",
" print(\"Waiting for server to start\", end=\"\")\n",
" for _ in range(max_retries):\n",
" try:\n",
" response = requests.get(url)\n",
" if response.status_code == 200:\n",
" print(\"\\nServer is ready!\")\n",
" return True\n",
" except ConnectionError:\n",
" print(\".\", end=\"\", flush=True)\n",
" time.sleep(retry_interval)\n",
"\n",
" print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n",
" return False\n",
"\n",
"\n",
"# use this helper if needed to kill the server\n",
"def kill_llama_stack_server():\n",
" # Kill any existing llama stack server processes\n",
" os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n"
]
},
{
"cell_type": "markdown",
"id": "c40e9efd",
"metadata": {},
"source": [
"### 2.2. Start the Llama Stack Server"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f779283d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting Llama Stack server with PID: 787100\n",
"Waiting for server to start\n",
"Server is ready!\n"
]
}
],
"source": [
"server_process = run_llama_stack_server_background()\n",
"assert wait_for_server_to_start()"
]
},
{
"cell_type": "markdown",
"id": "28477c03",
"metadata": {},
"source": [
"## Step 3: Run the demo"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7da71011",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html\n",
"prompt> How do you do great work?\n",
"\u001b[33minference> \u001b[0m\u001b[33m[k\u001b[0m\u001b[33mnowledge\u001b[0m\u001b[33m_search\u001b[0m\u001b[33m(query\u001b[0m\u001b[33m=\"\u001b[0m\u001b[33mWhat\u001b[0m\u001b[33m is\u001b[0m\u001b[33m the\u001b[0m\u001b[33m key\u001b[0m\u001b[33m to\u001b[0m\u001b[33m doing\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n",
"\u001b[32mtool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'}\u001b[0m\n",
"\u001b[32mtool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n', type='text'), TextContentItem(text=\"Result 1:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 2:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 3:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 4:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 5:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text='END of knowledge_search tool results.\\n', type='text'), TextContentItem(text='The above results were retrieved to help answer the user\\'s query: \"What is the key to doing great work\". Use them as supporting information only in answering this query.\\n', type='text')]\u001b[0m\n",
"\u001b[33minference> \u001b[0m\u001b[33mDoing\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m means\u001b[0m\u001b[33m doing\u001b[0m\u001b[33m something\u001b[0m\u001b[33m important\u001b[0m\u001b[33m so\u001b[0m\u001b[33m well\u001b[0m\u001b[33m that\u001b[0m\u001b[33m you\u001b[0m\u001b[33m expand\u001b[0m\u001b[33m people\u001b[0m\u001b[33m's\u001b[0m\u001b[33m ideas\u001b[0m\u001b[33m of\u001b[0m\u001b[33m what\u001b[0m\u001b[33m's\u001b[0m\u001b[33m possible\u001b[0m\u001b[33m.\u001b[0m\u001b[33m However\u001b[0m\u001b[33m,\u001b[0m\u001b[33m there\u001b[0m\u001b[33m's\u001b[0m\u001b[33m no\u001b[0m\u001b[33m threshold\u001b[0m\u001b[33m for\u001b[0m\u001b[33m importance\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m it\u001b[0m\u001b[33m's\u001b[0m\u001b[33m often\u001b[0m\u001b[33m hard\u001b[0m\u001b[33m to\u001b[0m\u001b[33m judge\u001b[0m\u001b[33m at\u001b[0m\u001b[33m the\u001b[0m\u001b[33m time\u001b[0m\u001b[33m anyway\u001b[0m\u001b[33m.\u001b[0m\u001b[33m Great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m is\u001b[0m\u001b[33m a\u001b[0m\u001b[33m matter\u001b[0m\u001b[33m of\u001b[0m\u001b[33m degree\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m it\u001b[0m\u001b[33m can\u001b[0m\u001b[33m be\u001b[0m\u001b[33m difficult\u001b[0m\u001b[33m to\u001b[0m\u001b[33m determine\u001b[0m\u001b[33m whether\u001b[0m\u001b[33m someone\u001b[0m\u001b[33m has\u001b[0m\u001b[33m done\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m until\u001b[0m\u001b[33m after\u001b[0m\u001b[33m the\u001b[0m\u001b[33m fact\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n",
"\u001b[30m\u001b[0m"
]
}
],
"source": [
"from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient\n",
"\n",
"vector_db_id = \"my_demo_vector_db\"\n",
"client = LlamaStackClient(base_url=\"http://0.0.0.0:8321\")\n",
"\n",
"models = client.models.list()\n",
"\n",
"# Select the first ollama and first ollama's embedding model\n",
"model_id = next(m for m in models if m.model_type == \"llm\" and m.provider_id == \"ollama\").identifier\n",
"embedding_model = next(m for m in models if m.model_type == \"embedding\" and m.provider_id == \"ollama\")\n",
"embedding_model_id = embedding_model.identifier\n",
"embedding_dimension = embedding_model.metadata[\"embedding_dimension\"]\n",
"\n",
"_ = client.vector_dbs.register(\n",
" vector_db_id=vector_db_id,\n",
" embedding_model=embedding_model_id,\n",
" embedding_dimension=embedding_dimension,\n",
" provider_id=\"faiss\",\n",
")\n",
"source = \"https://www.paulgraham.com/greatwork.html\"\n",
"print(\"rag_tool> Ingesting document:\", source)\n",
"document = RAGDocument(\n",
" document_id=\"document_1\",\n",
" content=source,\n",
" mime_type=\"text/html\",\n",
" metadata={},\n",
")\n",
"client.tool_runtime.rag_tool.insert(\n",
" documents=[document],\n",
" vector_db_id=vector_db_id,\n",
" chunk_size_in_tokens=50,\n",
")\n",
"agent = Agent(\n",
" client,\n",
" model=model_id,\n",
" instructions=\"You are a helpful assistant\",\n",
" tools=[\n",
" {\n",
" \"name\": \"builtin::rag/knowledge_search\",\n",
" \"args\": {\"vector_db_ids\": [vector_db_id]},\n",
" }\n",
" ],\n",
")\n",
"\n",
"prompt = \"How do you do great work?\"\n",
"print(\"prompt>\", prompt)\n",
"\n",
"response = agent.create_turn(\n",
" messages=[{\"role\": \"user\", \"content\": prompt}],\n",
" session_id=agent.create_session(\"rag_session\"),\n",
" stream=True,\n",
")\n",
"\n",
"for log in AgentEventLogger().log(response):\n",
" log.print()"
]
},
{
"cell_type": "markdown",
"id": "341aaadf",
"metadata": {},
"source": [
"Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳"
]
},
{
"cell_type": "markdown",
"id": "e88e1185",
"metadata": {},
"source": [
"## Next Steps"
]
},
{
"cell_type": "markdown",
"id": "bcb73600",
"metadata": {},
"source": [
"Now you're ready to dive deeper into Llama Stack!\n",
"- Explore the [Detailed Tutorial](./detailed_tutorial.md).\n",
"- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb).\n",
"- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks).\n",
"- Learn about Llama Stack [Concepts](../concepts/index.md).\n",
"- Discover how to [Build Llama Stacks](../distributions/index.md).\n",
"- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK.\n",
"- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"base_uri": "https://localhost:8080/"
"gpuType": "T4",
"provenance": []
},
"id": "J2kGed0R5PSf",
"outputId": "2478ea60-8d35-48a1-b011-f233831740c5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2mUsing Python 3.12.12 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/test\u001b[0m\n",
"\u001b[2mAudited \u001b[1m52 packages\u001b[0m \u001b[2min 1.56s\u001b[0m\u001b[0m\n",
"\u001b[2mUsing Python 3.12.12 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/test\u001b[0m\n",
"\u001b[2mAudited \u001b[1m3 packages\u001b[0m \u001b[2min 122ms\u001b[0m\u001b[0m\n",
"\u001b[2mUsing Python 3.12.12 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/test\u001b[0m\n",
"\u001b[2mAudited \u001b[1m3 packages\u001b[0m \u001b[2min 197ms\u001b[0m\u001b[0m\n",
"\u001b[2mUsing Python 3.12.12 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/test\u001b[0m\n",
"\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 11ms\u001b[0m\u001b[0m\n"
]
}
],
"source": [
"import os\n",
"import subprocess\n",
"\n",
"if \"UV_SYSTEM_PYTHON\" in os.environ:\n",
" del os.environ[\"UV_SYSTEM_PYTHON\"]\n",
"\n",
"# this command installs all the dependencies needed for the llama stack server with the ollama inference provider\n",
"!uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install\n",
"\n",
"def run_llama_stack_server_background():\n",
" log_file = open(\"llama_stack_server.log\", \"w\")\n",
" process = subprocess.Popen(\n",
" f\"OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter\",\n",
" shell=True,\n",
" stdout=log_file,\n",
" stderr=log_file,\n",
" text=True\n",
" )\n",
"\n",
" print(f\"Starting Llama Stack server with PID: {process.pid}\")\n",
" return process\n",
"\n",
"def wait_for_server_to_start():\n",
" import requests\n",
" from requests.exceptions import ConnectionError\n",
" import time\n",
"\n",
" url = \"http://0.0.0.0:8321/v1/health\"\n",
" max_retries = 30\n",
" retry_interval = 1\n",
"\n",
" print(\"Waiting for server to start\", end=\"\")\n",
" for _ in range(max_retries):\n",
" try:\n",
" response = requests.get(url)\n",
" if response.status_code == 200:\n",
" print(\"\\nServer is ready!\")\n",
" return True\n",
" except ConnectionError:\n",
" print(\".\", end=\"\", flush=True)\n",
" time.sleep(retry_interval)\n",
"\n",
" print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n",
" return False\n",
"\n",
"\n",
"# use this helper if needed to kill the server\n",
"def kill_llama_stack_server():\n",
" # Kill any existing llama stack server processes\n",
" os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n"
]
},
{
"cell_type": "markdown",
"id": "c40e9efd",
"metadata": {},
"source": [
"### 2.2. Start the Llama Stack Server"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f779283d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting Llama Stack server with PID: 20778\n",
"Waiting for server to start........\n",
"Server is ready!\n"
]
}
],
"source": [
"server_process = run_llama_stack_server_background()\n",
"assert wait_for_server_to_start()"
]
},
{
"cell_type": "markdown",
"id": "28477c03",
"metadata": {},
"source": [
"## Step 3: Run the demo"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7da71011",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:httpx:HTTP Request: GET http://0.0.0.0:8321/v1/models \"HTTP/1.1 200 OK\"\n",
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/files \"HTTP/1.1 200 OK\"\n",
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/vector_stores \"HTTP/1.1 200 OK\"\n",
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/conversations \"HTTP/1.1 200 OK\"\n",
"INFO:httpx:HTTP Request: POST http://0.0.0.0:8321/v1/responses \"HTTP/1.1 200 OK\"\n"
]
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"prompt> How do you do great work?\n",
"🤔 Doing great work involves a combination of skills, habits, and mindsets. Here are some key principles:\n",
"\n",
"1. **Set Clear Goals**: Start with a clear vision of what you want to achieve. Define specific, measurable, achievable, relevant, and time-bound (SMART) goals.\n",
"\n",
"2. **Plan and Prioritize**: Break your goals into smaller, manageable tasks. Prioritize these tasks based on their importance and urgency.\n",
"\n",
"3. **Focus on Quality**: Aim for high-quality outcomes rather than just finishing tasks. Pay attention to detail, and ensure your work meets or exceeds standards.\n",
"\n",
"4. **Stay Organized**: Keep your workspace, both physical and digital, organized to help you stay focused and efficient.\n",
"\n",
"5. **Manage Your Time**: Use time management techniques such as the Pomodoro Technique, time blocking, or the Eisenhower Box to maximize productivity.\n",
"\n",
"6. **Seek Feedback and Learn**: Regularly seek feedback from peers, mentors, or supervisors. Use constructive criticism to improve continuously.\n",
"\n",
"7. **Innovate and Improve**: Look for ways to improve processes or introduce new ideas. Be open to change and willing to adapt.\n",
"\n",
"8. **Stay Motivated and Persistent**: Keep your end goals in mind to stay motivated. Overcome setbacks with resilience and persistence.\n",
"\n",
"9. **Balance and Rest**: Ensure you maintain a healthy work-life balance. Take breaks and manage stress to sustain long-term productivity.\n",
"\n",
"10. **Reflect and Adjust**: Regularly assess your progress and adjust your strategies as needed. Reflect on what works well and what doesn't.\n",
"\n",
"By incorporating these elements, you can consistently produce high-quality work and achieve excellence in your endeavors.\n"
]
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
],
"source": [
"from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient\n",
"import requests\n",
"\n",
"vector_store_id = \"my_demo_vector_db\"\n",
"client = LlamaStackClient(base_url=\"http://0.0.0.0:8321\")\n",
"\n",
"models = client.models.list()\n",
"\n",
"# Select the first ollama and first ollama's embedding model\n",
"model_id = next(m for m in models if m.model_type == \"llm\" and m.provider_id == \"ollama\").identifier\n",
"\n",
"\n",
"source = \"https://www.paulgraham.com/greatwork.html\"\n",
"response = requests.get(source)\n",
"file = client.files.create(\n",
" file=response.content,\n",
" purpose='assistants'\n",
")\n",
"vector_store = client.vector_stores.create(\n",
" name=vector_store_id,\n",
" file_ids=[file.id],\n",
")\n",
"\n",
"agent = Agent(\n",
" client,\n",
" model=model_id,\n",
" instructions=\"You are a helpful assistant\",\n",
" tools=[\n",
" {\n",
" \"type\": \"file_search\",\n",
" \"vector_store_ids\": [vector_store_id],\n",
" }\n",
" ],\n",
")\n",
"\n",
"prompt = \"How do you do great work?\"\n",
"print(\"prompt>\", prompt)\n",
"\n",
"response = agent.create_turn(\n",
" messages=[{\"role\": \"user\", \"content\": prompt}],\n",
" session_id=agent.create_session(\"rag_session\"),\n",
" stream=True,\n",
")\n",
"\n",
"for log in AgentEventLogger().log(response):\n",
" print(log, end=\"\")"
]
},
{
"cell_type": "markdown",
"id": "341aaadf",
"metadata": {},
"source": [
"Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳"
]
},
{
"cell_type": "markdown",
"id": "e88e1185",
"metadata": {},
"source": [
"## Next Steps"
]
},
{
"cell_type": "markdown",
"id": "bcb73600",
"metadata": {},
"source": [
"Now you're ready to dive deeper into Llama Stack!\n",
"- Explore the [Detailed Tutorial](./detailed_tutorial.md).\n",
"- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb).\n",
"- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks).\n",
"- Learn about Llama Stack [Concepts](../concepts/index.md).\n",
"- Discover how to [Build Llama Stacks](../distributions/index.md).\n",
"- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK.\n",
"- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
"nbformat": 4,
"nbformat_minor": 5
}

View file

@ -47,11 +47,11 @@ function QuickStart() {
<pre><code>{`# Install uv and start Ollama
ollama run llama3.2:3b --keepalive 60m
# Install server dependencies
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run Llama Stack server
OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter
OLLAMA_URL=http://localhost:11434 \\
uv run --with llama-stack \\
llama stack build --distro starter \\
--image-type venv --run
# Try the Python SDK
from llama_stack_client import LlamaStackClient

View file

@ -5547,7 +5547,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -5798,7 +5798,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -9024,10 +9024,6 @@
"$ref": "#/components/schemas/OpenAIResponseUsage",
"description": "(Optional) Token usage information for the response"
},
"instructions": {
"type": "string",
"description": "(Optional) System message inserted into the model's context"
},
"input": {
"type": "array",
"items": {
@ -9905,10 +9901,6 @@
"usage": {
"$ref": "#/components/schemas/OpenAIResponseUsage",
"description": "(Optional) Token usage information for the response"
},
"instructions": {
"type": "string",
"description": "(Optional) System message inserted into the model's context"
}
},
"additionalProperties": false,
@ -13457,8 +13449,8 @@
},
{
"name": "Eval",
"description": "Llama Stack Evaluation API for running evaluations on model and agent candidates.",
"x-displayName": "Evaluations"
"description": "",
"x-displayName": "Llama Stack Evaluation API for running evaluations on model and agent candidates."
},
{
"name": "Files",

View file

@ -4114,7 +4114,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -4303,7 +4303,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -6734,10 +6734,6 @@ components:
$ref: '#/components/schemas/OpenAIResponseUsage'
description: >-
(Optional) Token usage information for the response
instructions:
type: string
description: >-
(Optional) System message inserted into the model's context
input:
type: array
items:
@ -7407,10 +7403,6 @@ components:
$ref: '#/components/schemas/OpenAIResponseUsage'
description: >-
(Optional) Token usage information for the response
instructions:
type: string
description: >-
(Optional) System message inserted into the model's context
additionalProperties: false
required:
- created_at
@ -10204,9 +10196,9 @@ tags:
- name: Datasets
description: ''
- name: Eval
description: >-
description: ''
x-displayName: >-
Llama Stack Evaluation API for running evaluations on model and agent candidates.
x-displayName: Evaluations
- name: Files
description: >-
This API is used to upload documents that can be used with other Llama Stack

View file

@ -1850,7 +1850,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -3983,7 +3983,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -5518,8 +5518,8 @@
},
{
"name": "Eval",
"description": "Llama Stack Evaluation API for running evaluations on model and agent candidates.",
"x-displayName": "Evaluations"
"description": "",
"x-displayName": "Llama Stack Evaluation API for running evaluations on model and agent candidates."
},
{
"name": "PostTraining (Coming Soon)",

View file

@ -1320,7 +1320,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -2927,7 +2927,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -4119,9 +4119,9 @@ tags:
- name: Datasets
description: ''
- name: Eval
description: >-
description: ''
x-displayName: >-
Llama Stack Evaluation API for running evaluations on model and agent candidates.
x-displayName: Evaluations
- name: PostTraining (Coming Soon)
description: ''
x-tagGroups:

View file

@ -282,7 +282,7 @@
"Conversations"
],
"summary": "Create a conversation.",
"description": "Create a conversation.\nCreate a conversation.",
"description": "Create a conversation.",
"parameters": [],
"requestBody": {
"content": {
@ -326,8 +326,8 @@
"tags": [
"Conversations"
],
"summary": "Retrieve a conversation.",
"description": "Retrieve a conversation.\nGet a conversation with the given ID.",
"summary": "Get a conversation with the given ID.",
"description": "Get a conversation with the given ID.",
"parameters": [
{
"name": "conversation_id",
@ -369,8 +369,8 @@
"tags": [
"Conversations"
],
"summary": "Update a conversation.",
"description": "Update a conversation.\nUpdate a conversation's metadata with the given ID.",
"summary": "Update a conversation's metadata with the given ID.",
"description": "Update a conversation's metadata with the given ID.",
"parameters": [
{
"name": "conversation_id",
@ -422,8 +422,8 @@
"tags": [
"Conversations"
],
"summary": "Delete a conversation.",
"description": "Delete a conversation.\nDelete a conversation with the given ID.",
"summary": "Delete a conversation with the given ID.",
"description": "Delete a conversation with the given ID.",
"parameters": [
{
"name": "conversation_id",
@ -467,8 +467,8 @@
"tags": [
"Conversations"
],
"summary": "List items.",
"description": "List items.\nList items in the conversation.",
"summary": "List items in the conversation.",
"description": "List items in the conversation.",
"parameters": [
{
"name": "conversation_id",
@ -597,8 +597,8 @@
"tags": [
"Conversations"
],
"summary": "Create items.",
"description": "Create items.\nCreate items in the conversation.",
"summary": "Create items in the conversation.",
"description": "Create items in the conversation.",
"parameters": [
{
"name": "conversation_id",
@ -652,8 +652,8 @@
"tags": [
"Conversations"
],
"summary": "Retrieve an item.",
"description": "Retrieve an item.\nRetrieve a conversation item.",
"summary": "Retrieve a conversation item.",
"description": "Retrieve a conversation item.",
"parameters": [
{
"name": "conversation_id",
@ -704,8 +704,8 @@
"tags": [
"Conversations"
],
"summary": "Delete an item.",
"description": "Delete an item.\nDelete a conversation item.",
"summary": "Delete a conversation item.",
"description": "Delete a conversation item.",
"parameters": [
{
"name": "conversation_id",
@ -6800,7 +6800,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -7600,10 +7600,6 @@
"$ref": "#/components/schemas/OpenAIResponseUsage",
"description": "(Optional) Token usage information for the response"
},
"instructions": {
"type": "string",
"description": "(Optional) System message inserted into the model's context"
},
"input": {
"type": "array",
"items": {
@ -8152,10 +8148,6 @@
"usage": {
"$ref": "#/components/schemas/OpenAIResponseUsage",
"description": "(Optional) Token usage information for the response"
},
"instructions": {
"type": "string",
"description": "(Optional) System message inserted into the model's context"
}
},
"additionalProperties": false,
@ -10205,7 +10197,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -10687,7 +10679,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -11740,7 +11732,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -13259,8 +13251,8 @@
},
{
"name": "Conversations",
"description": "Protocol for conversation management operations.",
"x-displayName": "Conversations"
"description": "",
"x-displayName": "Protocol for conversation management operations."
},
{
"name": "Files",

View file

@ -192,10 +192,7 @@ paths:
tags:
- Conversations
summary: Create a conversation.
description: >-
Create a conversation.
Create a conversation.
description: Create a conversation.
parameters: []
requestBody:
content:
@ -225,11 +222,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Retrieve a conversation.
description: >-
Retrieve a conversation.
Get a conversation with the given ID.
summary: Get a conversation with the given ID.
description: Get a conversation with the given ID.
parameters:
- name: conversation_id
in: path
@ -258,10 +252,9 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Update a conversation.
summary: >-
Update a conversation's metadata with the given ID.
description: >-
Update a conversation.
Update a conversation's metadata with the given ID.
parameters:
- name: conversation_id
@ -297,11 +290,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Delete a conversation.
description: >-
Delete a conversation.
Delete a conversation with the given ID.
summary: Delete a conversation with the given ID.
description: Delete a conversation with the given ID.
parameters:
- name: conversation_id
in: path
@ -331,11 +321,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: List items.
description: >-
List items.
List items in the conversation.
summary: List items in the conversation.
description: List items in the conversation.
parameters:
- name: conversation_id
in: path
@ -508,11 +495,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Create items.
description: >-
Create items.
Create items in the conversation.
summary: Create items in the conversation.
description: Create items in the conversation.
parameters:
- name: conversation_id
in: path
@ -548,11 +532,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Retrieve an item.
description: >-
Retrieve an item.
Retrieve a conversation item.
summary: Retrieve a conversation item.
description: Retrieve a conversation item.
parameters:
- name: conversation_id
in: path
@ -587,11 +568,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Delete an item.
description: >-
Delete an item.
Delete a conversation item.
summary: Delete a conversation item.
description: Delete a conversation item.
parameters:
- name: conversation_id
in: path
@ -5227,7 +5205,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -5815,10 +5793,6 @@ components:
$ref: '#/components/schemas/OpenAIResponseUsage'
description: >-
(Optional) Token usage information for the response
instructions:
type: string
description: >-
(Optional) System message inserted into the model's context
input:
type: array
items:
@ -6222,10 +6196,6 @@ components:
$ref: '#/components/schemas/OpenAIResponseUsage'
description: >-
(Optional) Token usage information for the response
instructions:
type: string
description: >-
(Optional) System message inserted into the model's context
additionalProperties: false
required:
- created_at
@ -7919,7 +7889,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -8227,7 +8197,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -8990,7 +8960,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -10176,9 +10146,9 @@ tags:
- `background`
x-displayName: Agents
- name: Conversations
description: >-
description: ''
x-displayName: >-
Protocol for conversation management operations.
x-displayName: Conversations
- name: Files
description: >-
This API is used to upload documents that can be used with other Llama Stack

View file

@ -282,7 +282,7 @@
"Conversations"
],
"summary": "Create a conversation.",
"description": "Create a conversation.\nCreate a conversation.",
"description": "Create a conversation.",
"parameters": [],
"requestBody": {
"content": {
@ -326,8 +326,8 @@
"tags": [
"Conversations"
],
"summary": "Retrieve a conversation.",
"description": "Retrieve a conversation.\nGet a conversation with the given ID.",
"summary": "Get a conversation with the given ID.",
"description": "Get a conversation with the given ID.",
"parameters": [
{
"name": "conversation_id",
@ -369,8 +369,8 @@
"tags": [
"Conversations"
],
"summary": "Update a conversation.",
"description": "Update a conversation.\nUpdate a conversation's metadata with the given ID.",
"summary": "Update a conversation's metadata with the given ID.",
"description": "Update a conversation's metadata with the given ID.",
"parameters": [
{
"name": "conversation_id",
@ -422,8 +422,8 @@
"tags": [
"Conversations"
],
"summary": "Delete a conversation.",
"description": "Delete a conversation.\nDelete a conversation with the given ID.",
"summary": "Delete a conversation with the given ID.",
"description": "Delete a conversation with the given ID.",
"parameters": [
{
"name": "conversation_id",
@ -467,8 +467,8 @@
"tags": [
"Conversations"
],
"summary": "List items.",
"description": "List items.\nList items in the conversation.",
"summary": "List items in the conversation.",
"description": "List items in the conversation.",
"parameters": [
{
"name": "conversation_id",
@ -597,8 +597,8 @@
"tags": [
"Conversations"
],
"summary": "Create items.",
"description": "Create items.\nCreate items in the conversation.",
"summary": "Create items in the conversation.",
"description": "Create items in the conversation.",
"parameters": [
{
"name": "conversation_id",
@ -652,8 +652,8 @@
"tags": [
"Conversations"
],
"summary": "Retrieve an item.",
"description": "Retrieve an item.\nRetrieve a conversation item.",
"summary": "Retrieve a conversation item.",
"description": "Retrieve a conversation item.",
"parameters": [
{
"name": "conversation_id",
@ -704,8 +704,8 @@
"tags": [
"Conversations"
],
"summary": "Delete an item.",
"description": "Delete an item.\nDelete a conversation item.",
"summary": "Delete a conversation item.",
"description": "Delete a conversation item.",
"parameters": [
{
"name": "conversation_id",
@ -8472,7 +8472,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -9272,10 +9272,6 @@
"$ref": "#/components/schemas/OpenAIResponseUsage",
"description": "(Optional) Token usage information for the response"
},
"instructions": {
"type": "string",
"description": "(Optional) System message inserted into the model's context"
},
"input": {
"type": "array",
"items": {
@ -9824,10 +9820,6 @@
"usage": {
"$ref": "#/components/schemas/OpenAIResponseUsage",
"description": "(Optional) Token usage information for the response"
},
"instructions": {
"type": "string",
"description": "(Optional) System message inserted into the model's context"
}
},
"additionalProperties": false,
@ -11877,7 +11869,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -12359,7 +12351,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -13412,7 +13404,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -14959,7 +14951,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -16704,7 +16696,7 @@
"enum": [
"model",
"shield",
"vector_store",
"vector_db",
"dataset",
"scoring_function",
"benchmark",
@ -17936,8 +17928,8 @@
},
{
"name": "Conversations",
"description": "Protocol for conversation management operations.",
"x-displayName": "Conversations"
"description": "",
"x-displayName": "Protocol for conversation management operations."
},
{
"name": "DatasetIO",
@ -17949,8 +17941,8 @@
},
{
"name": "Eval",
"description": "Llama Stack Evaluation API for running evaluations on model and agent candidates.",
"x-displayName": "Evaluations"
"description": "",
"x-displayName": "Llama Stack Evaluation API for running evaluations on model and agent candidates."
},
{
"name": "Files",

View file

@ -195,10 +195,7 @@ paths:
tags:
- Conversations
summary: Create a conversation.
description: >-
Create a conversation.
Create a conversation.
description: Create a conversation.
parameters: []
requestBody:
content:
@ -228,11 +225,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Retrieve a conversation.
description: >-
Retrieve a conversation.
Get a conversation with the given ID.
summary: Get a conversation with the given ID.
description: Get a conversation with the given ID.
parameters:
- name: conversation_id
in: path
@ -261,10 +255,9 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Update a conversation.
summary: >-
Update a conversation's metadata with the given ID.
description: >-
Update a conversation.
Update a conversation's metadata with the given ID.
parameters:
- name: conversation_id
@ -300,11 +293,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Delete a conversation.
description: >-
Delete a conversation.
Delete a conversation with the given ID.
summary: Delete a conversation with the given ID.
description: Delete a conversation with the given ID.
parameters:
- name: conversation_id
in: path
@ -334,11 +324,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: List items.
description: >-
List items.
List items in the conversation.
summary: List items in the conversation.
description: List items in the conversation.
parameters:
- name: conversation_id
in: path
@ -511,11 +498,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Create items.
description: >-
Create items.
Create items in the conversation.
summary: Create items in the conversation.
description: Create items in the conversation.
parameters:
- name: conversation_id
in: path
@ -551,11 +535,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Retrieve an item.
description: >-
Retrieve an item.
Retrieve a conversation item.
summary: Retrieve a conversation item.
description: Retrieve a conversation item.
parameters:
- name: conversation_id
in: path
@ -590,11 +571,8 @@ paths:
$ref: '#/components/responses/DefaultError'
tags:
- Conversations
summary: Delete an item.
description: >-
Delete an item.
Delete a conversation item.
summary: Delete a conversation item.
description: Delete a conversation item.
parameters:
- name: conversation_id
in: path
@ -6440,7 +6418,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -7028,10 +7006,6 @@ components:
$ref: '#/components/schemas/OpenAIResponseUsage'
description: >-
(Optional) Token usage information for the response
instructions:
type: string
description: >-
(Optional) System message inserted into the model's context
input:
type: array
items:
@ -7435,10 +7409,6 @@ components:
$ref: '#/components/schemas/OpenAIResponseUsage'
description: >-
(Optional) Token usage information for the response
instructions:
type: string
description: >-
(Optional) System message inserted into the model's context
additionalProperties: false
required:
- created_at
@ -9132,7 +9102,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -9440,7 +9410,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -10203,7 +10173,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -11325,7 +11295,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -12652,7 +12622,7 @@ components:
enum:
- model
- shield
- vector_store
- vector_db
- dataset
- scoring_function
- benchmark
@ -13563,17 +13533,17 @@ tags:
- name: Benchmarks
description: ''
- name: Conversations
description: >-
description: ''
x-displayName: >-
Protocol for conversation management operations.
x-displayName: Conversations
- name: DatasetIO
description: ''
- name: Datasets
description: ''
- name: Eval
description: >-
description: ''
x-displayName: >-
Llama Stack Evaluation API for running evaluations on model and agent candidates.
x-displayName: Evaluations
- name: Files
description: >-
This API is used to upload documents that can be used with other Llama Stack

View file

@ -78,14 +78,17 @@ If you're looking for more specific topics, we have a [Zero to Hero Guide](#next
## Build, Configure, and Run Llama Stack
1. **Install dependencies**:
1. **Build the Llama Stack**:
Build the Llama Stack using the `starter` template:
```bash
llama stack list-deps starter | xargs -L1 uv pip install
uv run --with llama-stack llama stack build --distro starter --image-type venv
```
2. **Start the distribution**:
**Expected Output:**
```bash
llama stack run starter
...
Build Successful!
You can find the newly-built template here: ~/.llama/distributions/starter/starter-run.yaml
You can run the new Llama Stack Distro via: uv run --with llama-stack llama stack run starter
```
3. **Set the ENV variables by exporting them to the terminal**:

View file

@ -545,7 +545,6 @@ class OpenAIResponseObject(BaseModel):
:param tools: (Optional) An array of tools the model may call while generating a response.
:param truncation: (Optional) Truncation strategy applied to the response
:param usage: (Optional) Token usage information for the response
:param instructions: (Optional) System message inserted into the model's context
"""
created_at: int
@ -565,7 +564,6 @@ class OpenAIResponseObject(BaseModel):
tools: list[OpenAIResponseTool] | None = None
truncation: str | None = None
usage: OpenAIResponseUsage | None = None
instructions: str | None = None
@json_schema_type

View file

@ -173,9 +173,7 @@ class ConversationItemDeletedResource(BaseModel):
@runtime_checkable
@trace_protocol
class Conversations(Protocol):
"""Conversations
Protocol for conversation management operations."""
"""Protocol for conversation management operations."""
@webmethod(route="/conversations", method="POST", level=LLAMA_STACK_API_V1)
async def create_conversation(
@ -183,8 +181,6 @@ class Conversations(Protocol):
) -> Conversation:
"""Create a conversation.
Create a conversation.
:param items: Initial items to include in the conversation context.
:param metadata: Set of key-value pairs that can be attached to an object.
:returns: The created conversation object.
@ -193,9 +189,7 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}", method="GET", level=LLAMA_STACK_API_V1)
async def get_conversation(self, conversation_id: str) -> Conversation:
"""Retrieve a conversation.
Get a conversation with the given ID.
"""Get a conversation with the given ID.
:param conversation_id: The conversation identifier.
:returns: The conversation object.
@ -204,9 +198,7 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}", method="POST", level=LLAMA_STACK_API_V1)
async def update_conversation(self, conversation_id: str, metadata: Metadata) -> Conversation:
"""Update a conversation.
Update a conversation's metadata with the given ID.
"""Update a conversation's metadata with the given ID.
:param conversation_id: The conversation identifier.
:param metadata: Set of key-value pairs that can be attached to an object.
@ -216,9 +208,7 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}", method="DELETE", level=LLAMA_STACK_API_V1)
async def openai_delete_conversation(self, conversation_id: str) -> ConversationDeletedResource:
"""Delete a conversation.
Delete a conversation with the given ID.
"""Delete a conversation with the given ID.
:param conversation_id: The conversation identifier.
:returns: The deleted conversation resource.
@ -227,9 +217,7 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}/items", method="POST", level=LLAMA_STACK_API_V1)
async def add_items(self, conversation_id: str, items: list[ConversationItem]) -> ConversationItemList:
"""Create items.
Create items in the conversation.
"""Create items in the conversation.
:param conversation_id: The conversation identifier.
:param items: Items to include in the conversation context.
@ -239,9 +227,7 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}/items/{item_id}", method="GET", level=LLAMA_STACK_API_V1)
async def retrieve(self, conversation_id: str, item_id: str) -> ConversationItem:
"""Retrieve an item.
Retrieve a conversation item.
"""Retrieve a conversation item.
:param conversation_id: The conversation identifier.
:param item_id: The item identifier.
@ -258,9 +244,7 @@ class Conversations(Protocol):
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
) -> ConversationItemList:
"""List items.
List items in the conversation.
"""List items in the conversation.
:param conversation_id: The conversation identifier.
:param after: An item ID to list items after, used in pagination.
@ -275,9 +259,7 @@ class Conversations(Protocol):
async def openai_delete_conversation_item(
self, conversation_id: str, item_id: str
) -> ConversationItemDeletedResource:
"""Delete an item.
Delete a conversation item.
"""Delete a conversation item.
:param conversation_id: The conversation identifier.
:param item_id: The item identifier.

View file

@ -121,7 +121,6 @@ class Api(Enum, metaclass=DynamicApiMeta):
models = "models"
shields = "shields"
vector_stores = "vector_stores" # only used for routing table
datasets = "datasets"
scoring_functions = "scoring_functions"
benchmarks = "benchmarks"

View file

@ -82,9 +82,7 @@ class EvaluateResponse(BaseModel):
class Eval(Protocol):
"""Evaluations
Llama Stack Evaluation API for running evaluations on model and agent candidates."""
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1ALPHA)

View file

@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
class ResourceType(StrEnum):
model = "model"
shield = "shield"
vector_store = "vector_store"
vector_db = "vector_db"
dataset = "dataset"
scoring_function = "scoring_function"
benchmark = "benchmark"
@ -34,4 +34,4 @@ class Resource(BaseModel):
provider_id: str = Field(description="ID of the provider that owns this resource")
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_store', etc.)")
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)")

View file

@ -3,3 +3,5 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .vector_dbs import *

View file

@ -9,43 +9,53 @@ from typing import Literal
from pydantic import BaseModel
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type
# Internal resource type for storing the vector store routing and other information
class VectorStore(Resource):
@json_schema_type
class VectorDB(Resource):
"""Vector database resource for storing and querying vector embeddings.
:param type: Type of resource, always 'vector_store' for vector stores
:param type: Type of resource, always 'vector_db' for vector databases
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
"""
type: Literal[ResourceType.vector_store] = ResourceType.vector_store
type: Literal[ResourceType.vector_db] = ResourceType.vector_db
embedding_model: str
embedding_dimension: int
vector_store_name: str | None = None
vector_db_name: str | None = None
@property
def vector_store_id(self) -> str:
def vector_db_id(self) -> str:
return self.identifier
@property
def provider_vector_store_id(self) -> str | None:
def provider_vector_db_id(self) -> str | None:
return self.provider_resource_id
class VectorStoreInput(BaseModel):
class VectorDBInput(BaseModel):
"""Input parameters for creating or configuring a vector database.
:param vector_store_id: Unique identifier for the vector store
:param vector_db_id: Unique identifier for the vector database
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
:param provider_vector_store_id: (Optional) Provider-specific identifier for the vector store
:param provider_vector_db_id: (Optional) Provider-specific identifier for the vector database
"""
vector_store_id: str
vector_db_id: str
embedding_model: str
embedding_dimension: int
provider_id: str | None = None
provider_vector_store_id: str | None = None
provider_vector_db_id: str | None = None
class ListVectorDBsResponse(BaseModel):
"""Response from listing vector databases.
:param data: List of vector databases
"""
data: list[VectorDB]

View file

@ -15,7 +15,7 @@ from fastapi import Body
from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
@ -140,7 +140,6 @@ class VectorStoreFileCounts(BaseModel):
total: int
# TODO: rename this as OpenAIVectorStore
@json_schema_type
class VectorStoreObject(BaseModel):
"""OpenAI Vector Store object.
@ -518,18 +517,17 @@ class OpenAICreateVectorStoreFileBatchRequestWithExtraBody(BaseModel, extra="all
chunking_strategy: VectorStoreChunkingStrategy | None = None
class VectorStoreTable(Protocol):
def get_vector_store(self, vector_store_id: str) -> VectorStore | None: ...
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
@runtime_checkable
@trace_protocol
class VectorIO(Protocol):
vector_store_table: VectorStoreTable | None = None
vector_db_store: VectorDBStore | None = None
# this will just block now until chunks are inserted, but it should
# probably return a Job instance which can be polled for completion
# TODO: rename vector_db_id to vector_store_id once Stainless is working
@webmethod(route="/vector-io/insert", method="POST", level=LLAMA_STACK_API_V1)
async def insert_chunks(
self,
@ -548,7 +546,6 @@ class VectorIO(Protocol):
"""
...
# TODO: rename vector_db_id to vector_store_id once Stainless is working
@webmethod(route="/vector-io/query", method="POST", level=LLAMA_STACK_API_V1)
async def query_chunks(
self,

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .vector_stores import *

View file

@ -6,8 +6,6 @@
import argparse
from llama_stack.log import setup_logging
from .stack import StackParser
from .stack.utils import print_subcommand_description
@ -44,9 +42,6 @@ class LlamaCLIParser:
def main():
# Initialize logging from environment variables before any other operations
setup_logging()
parser = LlamaCLIParser()
args = parser.parse_args()
parser.run(args)

View file

@ -0,0 +1,490 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import importlib.resources
import json
import os
import shutil
import sys
import textwrap
from functools import lru_cache
from importlib.abc import Traversable
from pathlib import Path
import yaml
from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.validation import Validator
from termcolor import colored, cprint
from llama_stack.cli.stack.utils import ImageType
from llama_stack.cli.table import print_table
from llama_stack.core.build import (
SERVER_DEPENDENCIES,
build_image,
get_provider_dependencies,
)
from llama_stack.core.configure import parse_and_maybe_upgrade_config
from llama_stack.core.datatypes import (
BuildConfig,
BuildProvider,
DistributionSpec,
Provider,
StackRunConfig,
)
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.external import load_external_apis
from llama_stack.core.resolver import InvalidProviderError
from llama_stack.core.stack import replace_env_vars
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.core.utils.exec import formulate_run_args, run_command
from llama_stack.core.utils.image_types import LlamaStackImageType
from llama_stack.providers.datatypes import Api
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
DISTRIBS_PATH = Path(__file__).parent.parent.parent / "distributions"
@lru_cache
def available_distros_specs() -> dict[str, BuildConfig]:
import yaml
distro_specs = {}
for p in DISTRIBS_PATH.rglob("*build.yaml"):
distro_name = p.parent.name
with open(p) as f:
build_config = BuildConfig(**yaml.safe_load(f))
distro_specs[distro_name] = build_config
return distro_specs
def run_stack_build_command(args: argparse.Namespace) -> None:
if args.list_distros:
return _run_distro_list_cmd()
if args.image_type == ImageType.VENV.value:
current_venv = os.environ.get("VIRTUAL_ENV")
image_name = args.image_name or current_venv
else:
image_name = args.image_name
if args.template:
cprint(
"The --template argument is deprecated. Please use --distro instead.",
color="red",
file=sys.stderr,
)
distro_name = args.template
else:
distro_name = args.distribution
if distro_name:
available_distros = available_distros_specs()
if distro_name not in available_distros:
cprint(
f"Could not find distribution {distro_name}. Please run `llama stack build --list-distros` to check out the available distributions",
color="red",
file=sys.stderr,
)
sys.exit(1)
build_config = available_distros[distro_name]
if args.image_type:
build_config.image_type = args.image_type
else:
cprint(
f"Please specify a image-type ({' | '.join(e.value for e in ImageType)}) for {distro_name}",
color="red",
file=sys.stderr,
)
sys.exit(1)
elif args.providers:
provider_list: dict[str, list[BuildProvider]] = dict()
for api_provider in args.providers.split(","):
if "=" not in api_provider:
cprint(
"Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2",
color="red",
file=sys.stderr,
)
sys.exit(1)
api, provider_type = api_provider.split("=")
providers_for_api = get_provider_registry().get(Api(api), None)
if providers_for_api is None:
cprint(
f"{api} is not a valid API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
if provider_type in providers_for_api:
provider = BuildProvider(
provider_type=provider_type,
module=None,
)
provider_list.setdefault(api, []).append(provider)
else:
cprint(
f"{provider} is not a valid provider for the {api} API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
distribution_spec = DistributionSpec(
providers=provider_list,
description=",".join(args.providers),
)
if not args.image_type:
cprint(
f"Please specify a image-type (container | venv) for {args.template}",
color="red",
file=sys.stderr,
)
sys.exit(1)
build_config = BuildConfig(image_type=args.image_type, distribution_spec=distribution_spec)
elif not args.config and not distro_name:
name = prompt(
"> Enter a name for your Llama Stack (e.g. my-local-stack): ",
validator=Validator.from_callable(
lambda x: len(x) > 0,
error_message="Name cannot be empty, please enter a name",
),
)
image_type = prompt(
"> Enter the image type you want your Llama Stack to be built as (use <TAB> to see options): ",
completer=WordCompleter([e.value for e in ImageType]),
complete_while_typing=True,
validator=Validator.from_callable(
lambda x: x in [e.value for e in ImageType],
error_message="Invalid image type. Use <TAB> to see options",
),
)
image_name = f"llamastack-{name}"
cprint(
textwrap.dedent(
"""
Llama Stack is composed of several APIs working together. Let's select
the provider types (implementations) you want to use for these APIs.
""",
),
color="green",
file=sys.stderr,
)
cprint("Tip: use <TAB> to see options for the providers.\n", color="green", file=sys.stderr)
providers: dict[str, list[BuildProvider]] = dict()
for api, providers_for_api in get_provider_registry().items():
available_providers = [x for x in providers_for_api.keys() if x not in ("remote", "remote::sample")]
if not available_providers:
continue
api_provider = prompt(
f"> Enter provider for API {api.value}: ",
completer=WordCompleter(available_providers),
complete_while_typing=True,
validator=Validator.from_callable(
lambda x: x in available_providers, # noqa: B023 - see https://github.com/astral-sh/ruff/issues/7847
error_message="Invalid provider, use <TAB> to see options",
),
)
string_providers = api_provider.split(" ")
for provider in string_providers:
providers.setdefault(api.value, []).append(BuildProvider(provider_type=provider))
description = prompt(
"\n > (Optional) Enter a short description for your Llama Stack: ",
default="",
)
distribution_spec = DistributionSpec(
providers=providers,
description=description,
)
build_config = BuildConfig(image_type=image_type, distribution_spec=distribution_spec)
else:
with open(args.config) as f:
try:
contents = yaml.safe_load(f)
contents = replace_env_vars(contents)
build_config = BuildConfig(**contents)
if args.image_type:
build_config.image_type = args.image_type
except Exception as e:
cprint(
f"Could not parse config file {args.config}: {e}",
color="red",
file=sys.stderr,
)
sys.exit(1)
if args.print_deps_only:
print(f"# Dependencies for {distro_name or args.config or image_name}")
normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config)
normal_deps += SERVER_DEPENDENCIES
print(f"uv pip install {' '.join(normal_deps)}")
for special_dep in special_deps:
print(f"uv pip install {special_dep}")
for external_dep in external_provider_dependencies:
print(f"uv pip install {external_dep}")
return
try:
run_config = _run_stack_build_command_from_build_config(
build_config,
image_name=image_name,
config_path=args.config,
distro_name=distro_name,
)
except (Exception, RuntimeError) as exc:
import traceback
cprint(
f"Error building stack: {exc}",
color="red",
file=sys.stderr,
)
cprint("Stack trace:", color="red", file=sys.stderr)
traceback.print_exc()
sys.exit(1)
if run_config is None:
cprint(
"Run config path is empty",
color="red",
file=sys.stderr,
)
sys.exit(1)
if args.run:
config_dict = yaml.safe_load(run_config.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
if config.external_providers_dir and not config.external_providers_dir.exists():
config.external_providers_dir.mkdir(exist_ok=True)
run_args = formulate_run_args(args.image_type, image_name or config.image_name)
run_args.extend([str(os.getenv("LLAMA_STACK_PORT", 8321)), "--config", str(run_config)])
run_command(run_args)
def _generate_run_config(
build_config: BuildConfig,
build_dir: Path,
image_name: str,
) -> Path:
"""
Generate a run.yaml template file for user to edit from a build.yaml file
"""
apis = list(build_config.distribution_spec.providers.keys())
run_config = StackRunConfig(
container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None),
image_name=image_name,
apis=apis,
providers={},
external_providers_dir=build_config.external_providers_dir
if build_config.external_providers_dir
else EXTERNAL_PROVIDERS_DIR,
)
if not run_config.inference_store:
run_config.inference_store = SqliteSqlStoreConfig(
**SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=(DISTRIBS_BASE_DIR / image_name).as_posix(), db_name="inference_store.db"
)
)
# build providers dict
provider_registry = get_provider_registry(build_config)
for api in apis:
run_config.providers[api] = []
providers = build_config.distribution_spec.providers[api]
for provider in providers:
pid = provider.provider_type.split("::")[-1]
p = provider_registry[Api(api)][provider.provider_type]
if p.deprecation_error:
raise InvalidProviderError(p.deprecation_error)
try:
config_type = instantiate_class_type(provider_registry[Api(api)][provider.provider_type].config_class)
except (ModuleNotFoundError, ValueError) as exc:
# HACK ALERT:
# This code executes after building is done, the import cannot work since the
# package is either available in the venv or container - not available on the host.
# TODO: use a "is_external" flag in ProviderSpec to check if the provider is
# external
cprint(
f"Failed to import provider {provider.provider_type} for API {api} - assuming it's external, skipping: {exc}",
color="yellow",
file=sys.stderr,
)
# Set config_type to None to avoid UnboundLocalError
config_type = None
if config_type is not None and hasattr(config_type, "sample_run_config"):
config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}")
else:
config = {}
p_spec = Provider(
provider_id=pid,
provider_type=provider.provider_type,
config=config,
module=provider.module,
)
run_config.providers[api].append(p_spec)
run_config_file = build_dir / f"{image_name}-run.yaml"
with open(run_config_file, "w") as f:
to_write = json.loads(run_config.model_dump_json())
f.write(yaml.dump(to_write, sort_keys=False))
# Only print this message for non-container builds since it will be displayed before the
# container is built
# For non-container builds, the run.yaml is generated at the very end of the build process so it
# makes sense to display this message
if build_config.image_type != LlamaStackImageType.CONTAINER.value:
cprint(f"You can now run your stack with `llama stack run {run_config_file}`", color="green", file=sys.stderr)
return run_config_file
def _run_stack_build_command_from_build_config(
build_config: BuildConfig,
image_name: str | None = None,
distro_name: str | None = None,
config_path: str | None = None,
) -> Path | Traversable:
image_name = image_name or build_config.image_name
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
if distro_name:
image_name = f"distribution-{distro_name}"
else:
if not image_name:
raise ValueError("Please specify an image name when building a container image without a template")
else:
if not image_name and os.environ.get("UV_SYSTEM_PYTHON"):
image_name = "__system__"
if not image_name:
raise ValueError("Please specify an image name when building a venv image")
# At this point, image_name should be guaranteed to be a string
if image_name is None:
raise ValueError("image_name should not be None after validation")
if distro_name:
build_dir = DISTRIBS_BASE_DIR / distro_name
build_file_path = build_dir / f"{distro_name}-build.yaml"
else:
if image_name is None:
raise ValueError("image_name cannot be None")
build_dir = DISTRIBS_BASE_DIR / image_name
build_file_path = build_dir / f"{image_name}-build.yaml"
os.makedirs(build_dir, exist_ok=True)
run_config_file = None
# Generate the run.yaml so it can be included in the container image with the proper entrypoint
# Only do this if we're building a container image and we're not using a template
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not distro_name and config_path:
cprint("Generating run.yaml file", color="yellow", file=sys.stderr)
run_config_file = _generate_run_config(build_config, build_dir, image_name)
with open(build_file_path, "w") as f:
to_write = json.loads(build_config.model_dump_json(exclude_none=True))
f.write(yaml.dump(to_write, sort_keys=False))
# We first install the external APIs so that the build process can use them and discover the
# providers dependencies
if build_config.external_apis_dir:
cprint("Installing external APIs", color="yellow", file=sys.stderr)
external_apis = load_external_apis(build_config)
if external_apis:
# install the external APIs
packages = []
for _, api_spec in external_apis.items():
if api_spec.pip_packages:
packages.extend(api_spec.pip_packages)
cprint(
f"Installing {api_spec.name} with pip packages {api_spec.pip_packages}",
color="yellow",
file=sys.stderr,
)
return_code = run_command(["uv", "pip", "install", *packages])
if return_code != 0:
packages_str = ", ".join(packages)
raise RuntimeError(
f"Failed to install external APIs packages: {packages_str} (return code: {return_code})"
)
return_code = build_image(
build_config,
image_name,
distro_or_config=distro_name or config_path or str(build_file_path),
run_config=run_config_file.as_posix() if run_config_file else None,
)
if return_code != 0:
raise RuntimeError(f"Failed to build image {image_name}")
if distro_name:
# copy run.yaml from distribution to build_dir instead of generating it again
distro_path = importlib.resources.files("llama_stack") / f"distributions/{distro_name}/run.yaml"
run_config_file = build_dir / f"{distro_name}-run.yaml"
with importlib.resources.as_file(distro_path) as path:
shutil.copy(path, run_config_file)
cprint("Build Successful!", color="green", file=sys.stderr)
cprint(f"You can find the newly-built distribution here: {run_config_file}", color="blue", file=sys.stderr)
if build_config.image_type == LlamaStackImageType.VENV:
cprint(
"You can run the new Llama Stack distro (after activating "
+ colored(image_name, "cyan")
+ ") via: "
+ colored(f"llama stack run {run_config_file}", "blue"),
color="green",
file=sys.stderr,
)
elif build_config.image_type == LlamaStackImageType.CONTAINER:
cprint(
"You can run the container with: "
+ colored(
f"docker run -p 8321:8321 -v ~/.llama:/root/.llama localhost/{image_name} --port 8321", "blue"
),
color="green",
file=sys.stderr,
)
return distro_path
else:
return _generate_run_config(build_config, build_dir, image_name)
def _run_distro_list_cmd() -> None:
headers = [
"Distribution Name",
# "Providers",
"Description",
]
rows = []
for distro_name, spec in available_distros_specs().items():
rows.append(
[
distro_name,
# json.dumps(spec.distribution_spec.providers, indent=2),
spec.distribution_spec.description,
]
)
print_table(
rows,
headers,
separate_rows=True,
)

View file

@ -1,182 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import sys
from pathlib import Path
import yaml
from termcolor import cprint
from llama_stack.cli.stack.utils import ImageType
from llama_stack.core.build import get_provider_dependencies
from llama_stack.core.datatypes import (
BuildConfig,
BuildProvider,
DistributionSpec,
)
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.stack import replace_env_vars
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "templates"
logger = get_logger(name=__name__, category="cli")
# These are the dependencies needed by the distribution server.
# `llama-stack` is automatically installed by the installation script.
SERVER_DEPENDENCIES = [
"aiosqlite",
"fastapi",
"fire",
"httpx",
"uvicorn",
"opentelemetry-sdk",
"opentelemetry-exporter-otlp-proto-http",
]
def format_output_deps_only(
normal_deps: list[str],
special_deps: list[str],
external_deps: list[str],
uv: bool = False,
) -> str:
"""Format dependencies as a list."""
lines = []
uv_str = ""
if uv:
uv_str = "uv pip install "
# Quote deps with commas
quoted_normal_deps = [quote_if_needed(dep) for dep in normal_deps]
lines.append(f"{uv_str}{' '.join(quoted_normal_deps)}")
for special_dep in special_deps:
lines.append(f"{uv_str}{quote_special_dep(special_dep)}")
for external_dep in external_deps:
lines.append(f"{uv_str}{quote_special_dep(external_dep)}")
return "\n".join(lines)
def run_stack_list_deps_command(args: argparse.Namespace) -> None:
if args.config:
try:
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
config_file = resolve_config_or_distro(args.config, Mode.BUILD)
except ValueError as e:
cprint(
f"Could not parse config file {args.config}: {e}",
color="red",
file=sys.stderr,
)
sys.exit(1)
if config_file:
with open(config_file) as f:
try:
contents = yaml.safe_load(f)
contents = replace_env_vars(contents)
build_config = BuildConfig(**contents)
build_config.image_type = "venv"
except Exception as e:
cprint(
f"Could not parse config file {config_file}: {e}",
color="red",
file=sys.stderr,
)
sys.exit(1)
elif args.providers:
provider_list: dict[str, list[BuildProvider]] = dict()
for api_provider in args.providers.split(","):
if "=" not in api_provider:
cprint(
"Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2",
color="red",
file=sys.stderr,
)
sys.exit(1)
api, provider_type = api_provider.split("=")
providers_for_api = get_provider_registry().get(Api(api), None)
if providers_for_api is None:
cprint(
f"{api} is not a valid API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
if provider_type in providers_for_api:
provider = BuildProvider(
provider_type=provider_type,
module=None,
)
provider_list.setdefault(api, []).append(provider)
else:
cprint(
f"{provider_type} is not a valid provider for the {api} API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
distribution_spec = DistributionSpec(
providers=provider_list,
description=",".join(args.providers),
)
build_config = BuildConfig(image_type=ImageType.VENV.value, distribution_spec=distribution_spec)
normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config)
normal_deps += SERVER_DEPENDENCIES
# Add external API dependencies
if build_config.external_apis_dir:
from llama_stack.core.external import load_external_apis
external_apis = load_external_apis(build_config)
if external_apis:
for _, api_spec in external_apis.items():
normal_deps.extend(api_spec.pip_packages)
# Format and output based on requested format
output = format_output_deps_only(
normal_deps=normal_deps,
special_deps=special_deps,
external_deps=external_provider_dependencies,
uv=args.format == "uv",
)
print(output)
def quote_if_needed(dep):
# Add quotes if the dependency contains special characters that need escaping in shell
# This includes: commas, comparison operators (<, >, <=, >=, ==, !=)
needs_quoting = any(char in dep for char in [",", "<", ">", "="])
return f"'{dep}'" if needs_quoting else dep
def quote_special_dep(dep_string):
"""
Quote individual packages in a special dependency string.
Special deps may contain multiple packages and flags like --extra-index-url.
We need to quote only the package specs that contain special characters.
"""
parts = dep_string.split()
quoted_parts = []
for part in parts:
# Don't quote flags (they start with -)
if part.startswith("-"):
quoted_parts.append(part)
else:
# Quote package specs that need it
quoted_parts.append(quote_if_needed(part))
return " ".join(quoted_parts)

Some files were not shown because too many files have changed in this diff Show more