llama-stack-mirror/docs/source/providers/vector_io/sqlite-vec.md
Francisco Arceo 37b6da37ba
docs: Document sqlite-vec faiss comparison (#1821)
# What does this PR do?
This PR documents and benchmarks the performance tradeoffs between
sqlite-vec and FAISS inline VectorDB providers.

# Closes https://github.com/meta-llama/llama-stack/issues/1165

## Test Plan

The test was run using this script:

<details>
<summary>CLICK TO SHOW SCRIPT 👋  </summary>

```python

import cProfile
import os
import uuid
import time
import random
import string
import matplotlib.pyplot as plt
import pandas as pd
from termcolor import cprint
from llama_stack_client.types import Document
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from memory_profiler import profile
from line_profiler import LineProfiler

os.environ["INFERENCE_MODEL"] = "llama3.2:3b-instruct-fp16"
os.environ["LLAMA_STACK_CONFIG"] = "ollama"

def generate_random_chars(count=400):
    return ''.join(random.choices(string.ascii_letters, k=count))

def generate_documents(num_docs: int, num_chars: int):
    documents = [
        Document(
            document_id=f"doc-{i}",
            content=f"Document content for document {i} - {generate_random_chars(count=num_chars)}",
            mime_type="text/plain",
            metadata={},
        )
        for i in range(num_docs)
    ]
    return documents


@profile
def benchmark_write(client, vector_db_id, documents, batch_size=100):
    write_times = []
    for i in range(0, len(documents), batch_size):
        batch = documents[i:i + batch_size]
        start_time = time.time()
        client.tool_runtime.rag_tool.insert(
            documents=batch,
            vector_db_id=vector_db_id,
            chunk_size_in_tokens=512,
        )
        end_time = time.time()
        write_times.append(end_time - start_time)

    return write_times

@profile
def benchmark_read(client, provider_id, vector_db_id, user_prompts):
    response_times = []
    for prompt in user_prompts:
        start_time = time.time()
        response = client.vector_io.query(
            vector_db_id=vector_db_id,
            query=prompt,
        )
        end_time = time.time()
        response_times.append(end_time - start_time)
    return response_times

def profile_functions():
    profiler = LineProfiler()
    profiler.add_function(benchmark_write)
    profiler.add_function(benchmark_read)
    return profiler


def plot_results(output, batch_size):
    # Create a DataFrame for easy manipulation
    df_sqlite = pd.DataFrame(output['sqlite-vec'])
    df_faiss = pd.DataFrame(output['faiss'])

    df_sqlite['write_times'] *= 1000
    df_faiss['write_times'] *= 1000

    avg_write_sqlite = df_sqlite['write_times'].mean()
    avg_write_faiss = df_faiss['write_times'].mean()
    avg_read_sqlite = df_sqlite['read_times'].mean()
    avg_read_faiss = df_faiss['read_times'].mean()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['write_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Write Times')
    plt.hist(df_faiss['write_times'], bins=10, alpha=0.5, color='red', label='faiss Write Times')
    plt.axvline(avg_write_sqlite, color='blue', linestyle='--',
                label=f'Average Write Time (sqlite-vec): {avg_write_sqlite:.3f} ms')
    plt.axvline(avg_write_faiss, color='red', linestyle='--',
                label=f'Average Write Time (faiss): {avg_write_faiss:.3f} ms')
    plt.title(f'Histogram of Write Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]} with batch size = {batch_size}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('write_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['read_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Read Times')
    plt.hist(df_faiss['read_times'], bins=10, alpha=0.5, color='red', label='faiss Read Times')
    plt.axvline(avg_read_sqlite, color='blue', linestyle='--',
                label=f'Average Read Time (sqlite-vec): {avg_read_sqlite:.3f} ms')
    plt.axvline(avg_read_faiss, color='red', linestyle='--',
                label=f'Average Read Time (faiss): {avg_read_faiss:.3f} ms')
    plt.title(f'Histogram of Read Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('read_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['read_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Read Times')
    plt.hist(df_faiss['read_times'], bins=10, alpha=0.5, color='red', label='faiss Read Times')
    plt.axvline(avg_read_sqlite, color='blue', linestyle='--',
                label=f'Average Read Time (sqlite-vec): {avg_read_sqlite:.3f} ms')
    plt.axvline(avg_read_faiss, color='red', linestyle='--',
                label=f'Average Read Time (faiss): {avg_read_faiss:.3f} ms')
    plt.title(f'Histogram of Read Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('read_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.plot(df_sqlite.index, df_sqlite['write_times'],
             marker='o', markersize=4, linestyle='-', color='blue',
             label='sqlite-vec Write Times')
    plt.plot(df_faiss.index, df_faiss['write_times'],
             marker='x', markersize=4, linestyle='-', color='red',
             label='faiss Write Times')

    plt.title(f'Write Times by Operation Sequence\n(batch size = {batch_size})')
    plt.xlabel('Write Operation Sequence')
    plt.ylabel('Time (milliseconds)')
    plt.legend()
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.savefig('write_time_sequence.png')
    plt.close()
    # Print out the summary table
    print("\nPerformance Summary for sqlite-vec:")
    print(df_sqlite)

    # Print out the summary table
    print("\nPerformance Summary for faiss:")
    print(df_faiss)


def main():
    # Initialize the client
    client = LlamaStackAsLibraryClient("ollama")
    vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
    _ = client.initialize()

    # Generate a large dataset
    num_chars = 50
    num_docs = 100
    num_writes = 100
    write_batch_size = 100
    num_reads = 100

    documents = generate_documents(num_docs * write_batch_size, num_chars)
    user_prompts = [
        f"Tell me about document {i}" for i in range(1, num_reads + 1)
    ]

    providers = ["sqlite-vec", "faiss"]
    output = {
        provider_id: {"write_times": None, "read_times": None} for provider_id in providers
    }

    # Benchmark writes and reads for SQLite and Faiss
    for provider_id in providers:
        cprint(f"Benchmarking provider: {provider_id}", "yellow")
        client.vector_dbs.register(
            provider_id=provider_id,
            vector_db_id=vector_db_id,
            embedding_model="all-MiniLM-L6-v2",
            embedding_dimension=384,
        )
        write_times = benchmark_write(client, vector_db_id, documents, write_batch_size)

        average_write_time_ms = sum(write_times) / len(write_times) * 1000.
        cprint(f"Average write time for {provider_id} is {average_write_time_ms:.2f} milliseconds for {num_writes} runs", "blue")

        cprint(f"Benchmarking reads for provider: {provider_id}", "yellow")
        read_times = benchmark_read(client, provider_id, vector_db_id, user_prompts)

        average_read_time_ms = sum(read_times) / len(read_times) * 1000.
        cprint(f"Average read time for {provider_id} is {average_read_time_ms:.2f} milliseconds for {num_reads} runs", "blue")

        client.vector_dbs.unregister(vector_db_id=vector_db_id)
        output[provider_id]['write_times'] = write_times
        output[provider_id]['read_times'] = read_times
    # Generate plots and summary
    plot_results(output, write_batch_size)


if __name__ == "__main__":
    cProfile.run('main()', 'profile_output.prof')
```
</details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-28 17:41:33 +01:00

2.9 KiB

orphan
true

SQLite-Vec

SQLite-Vec is an inline vector database provider for Llama Stack. It allows you to store and query vectors directly within an SQLite database. That means you're not limited to storing vectors in memory or in a separate service.

Features

  • Lightweight and easy to use
  • Fully integrated with Llama Stacks
  • Uses disk-based storage for persistence, allowing for larger vector storage

Comparison to Faiss

The choice between Faiss and sqlite-vec should be made based on the needs of your application, as they have different strengths.

Choosing the Right Provider

Scenario Recommended Tool Reason
Online Analytical Processing (OLAP) Faiss Fast, in-memory searches
Online Transaction Processing (OLTP) sqlite-vec Frequent writes and reads
Frequent writes sqlite-vec Efficient disk-based storage and incremental indexing
Large datasets sqlite-vec Disk-based storage for larger vector storage
Datasets that can fit in memory, frequent reads Faiss Optimized for speed, indexing, and GPU acceleration

Empirical Example

Consider the histogram below in which 10,000 randomly generated strings were inserted in batches of 100 into both Faiss and sqlite-vec using client.tool_runtime.rag_tool.insert().

:alt: Comparison of SQLite-Vec and Faiss write times
:width: 400px

You will notice that the average write time for sqlite-vec was 788ms, compared to 47,640ms for Faiss. While the number is jarring, if you look at the distribution, you can see that it is rather uniformly spread across the [1500, 100000] interval.

Looking at each individual write in the order that the documents are inserted you'll see the increase in write speed as Faiss reindexes the vectors after each write.

:alt: Comparison of SQLite-Vec and Faiss write times
:width: 400px

In comparison, the read times for Faiss was on average 10% faster than sqlite-vec. The modes of the two distributions highlight the differences much further where Faiss will likely yield faster read performance.

:alt: Comparison of SQLite-Vec and Faiss read times
:width: 400px

Usage

To use sqlite-vec in your Llama Stack project, follow these steps:

  1. Install the necessary dependencies.
  2. Configure your Llama Stack project to use SQLite-Vec.
  3. Start storing and querying vectors.

Installation

You can install SQLite-Vec using pip:

pip install sqlite-vec

Documentation

See sqlite-vec's GitHub repo for more details about sqlite-vec in general.