mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 08:02:38 +00:00
1.7 KiB
1.7 KiB
Ssambanova Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-{{ name }} distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
{{ var }}: {{ description }} (default:{{ default_value }}) {% endfor %} {% endif %}
{% if default_models %}
Models
The following models are available by default:
{% for model in default_models %}
{{ model.model_id }} ({{ model.provider_model_id }}){% endfor %} {% endif %}
Prerequisite: API Keys
Make sure you have access to a Ssambanova API Key. You can get one by visiting Ssambanova.
Running Llama Stack with Ssambanova
You can do this via Conda (build code) or Docker which has a pre-built image.
Available INFERENCE_MODEL
- Meta-Llama-3.1-8B-Instruct
- Meta-Llama-3.1-70B-Instruct
- Meta-Llama-3.1-405B-Instruct
- Meta-Llama-3.2-1B-Instruct
- Meta-Llama-3.2-3B-Instruct
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env SSAMBANOVA_API_KEY=$SSAMBANOVA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
Via Conda
llama stack build --template ssambanova --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env SSAMBANOVA_API_KEY=$SSAMBANOVA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL