llama-stack-mirror/llama_stack/templates/ssambanova/doc_template.md
2024-11-24 01:41:55 -06:00

77 lines
1.7 KiB
Markdown

# Ssambanova Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{% if default_models %}
### Models
The following models are available by default:
{% for model in default_models %}
- `{{ model.model_id }} ({{ model.provider_model_id }})`
{% endfor %}
{% endif %}
### Prerequisite: API Keys
Make sure you have access to a Ssambanova API Key. You can get one by visiting [Ssambanova](https://cloud.sambanova.ai/apis).
## Running Llama Stack with Ssambanova
You can do this via Conda (build code) or Docker which has a pre-built image.
### Available INFERENCE_MODEL
- Meta-Llama-3.1-8B-Instruct
- Meta-Llama-3.1-70B-Instruct
- Meta-Llama-3.1-405B-Instruct
- Meta-Llama-3.2-1B-Instruct
- Meta-Llama-3.2-3B-Instruct
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env SSAMBANOVA_API_KEY=$SSAMBANOVA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```
### Via Conda
```bash
llama stack build --template ssambanova --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env SSAMBANOVA_API_KEY=$SSAMBANOVA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```