mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? Another doc enhancement for https://github.com/meta-llama/llama-stack/issues/1818 Summary of changes: - `docs/source/distributions/configuration.md` - Updated dropdown title to include a more user-friendly description. - `docs/_static/css/my_theme.css` - Added styling for `<h3>` elements to set a normal font weight. - `docs/source/distributions/starting_llama_stack_server.md` - Changed section headers from bold text to proper markdown headers (e.g., `##`). - Improved descriptions for starting Llama Stack server using different methods (library, container, conda, Kubernetes). - Enhanced clarity and structure by converting instructions into markdown headers and improved formatting. - `docs/source/getting_started/index.md` - Major restructuring of the "Quick Start" guide: - Added new introductory section for Llama Stack and its capabilities. - Reorganized steps into clearer subsections with proper markdown headers. - Replaced dropdowns with tabbed content for OS-specific instructions. - Added detailed steps for setting up and running the Llama Stack server and client. - Introduced new sections for running basic inference and building agents. - Enhanced readability and visual structure with emojis, admonitions, and examples. - `docs/source/providers/index.md` - Updated the list of LLM inference providers to include "Ollama." - Expanded the list of vector databases to include "SQLite-Vec." Let me know if you need further details! ## Test Plan Renders locally, included screenshot. # Documentation For https://github.com/meta-llama/llama-stack/issues/1818 <img width="1332" alt="Screenshot 2025-04-09 at 11 07 12 AM" src="https://github.com/user-attachments/assets/c106efb9-076c-4059-a4e0-a30fa738585b" /> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
65 lines
2.3 KiB
Markdown
65 lines
2.3 KiB
Markdown
# Providers Overview
|
|
|
|
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
|
- LLM inference providers (e.g., Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
|
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, SQLite-Vec, etc.),
|
|
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
|
|
|
Providers come in two flavors:
|
|
- **Remote**: the provider runs as a separate service external to the Llama Stack codebase. Llama Stack contains a small amount of adapter code.
|
|
- **Inline**: the provider is fully specified and implemented within the Llama Stack codebase. It may be a simple wrapper around an existing library, or a full fledged implementation within Llama Stack.
|
|
|
|
Importantly, Llama Stack always strives to provide at least one fully inline provider for each API so you can iterate on a fully featured environment locally.
|
|
|
|
## External Providers
|
|
|
|
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently. See the [External Providers Guide](external) for details.
|
|
|
|
## Agents
|
|
Run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
|
|
|
|
## DatasetIO
|
|
Interfaces with datasets and data loaders.
|
|
|
|
## Eval
|
|
Generates outputs (via Inference or Agents) and perform scoring.
|
|
|
|
## Inference
|
|
Runs inference with an LLM.
|
|
|
|
## Post Training
|
|
Fine-tunes a model.
|
|
|
|
## Safety
|
|
Applies safety policies to the output at a Systems (not only model) level.
|
|
|
|
## Scoring
|
|
Evaluates the outputs of the system.
|
|
|
|
## Telemetry
|
|
Collects telemetry data from the system.
|
|
|
|
## Tool Runtime
|
|
Is associated with the ToolGroup resouces.
|
|
|
|
## Vector IO
|
|
|
|
Vector IO refers to operations on vector databases, such as adding documents, searching, and deleting documents.
|
|
Vector IO plays a crucial role in [Retreival Augmented Generation (RAG)](../..//building_applications/rag), where the vector
|
|
io and database are used to store and retrieve documents for retrieval.
|
|
|
|
#### Vector IO Providers
|
|
The following providers (i.e., databases) are available for Vector IO:
|
|
|
|
```{toctree}
|
|
:maxdepth: 1
|
|
|
|
external
|
|
vector_io/faiss
|
|
vector_io/sqlite-vec
|
|
vector_io/chromadb
|
|
vector_io/pgvector
|
|
vector_io/qdrant
|
|
vector_io/milvus
|
|
vector_io/weaviate
|
|
```
|