forked from phoenix-oss/llama-stack-mirror
feat: Add a new template for dell
(#978)
- Added new template `dell` and its documentation - Update docs - [minor] uv fix i came across - codegen for all templates Tested with ```bash export INFERENCE_PORT=8181 export DEH_URL=http://0.0.0.0:$INFERENCE_PORT export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct export CHROMADB_HOST=localhost export CHROMADB_PORT=6601 export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank) export CUDA_VISIBLE_DEVICES=0 export LLAMA_STACK_PORT=8321 # build the stack template llama stack build --template=dell # start the TGI inference server podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0 # start chroma-db for vector-io ( aka RAG ) podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname) # build docker llama stack build --template=dell --image-type=container # run llama stack server ( via docker ) podman run -it \ --network host \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ # NOTE: mount the llama-stack / llama-model directories if testing local changes -v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL # test the server cd <PATH_TO_LLAMA_STACK_REPO> LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py ``` --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
This commit is contained in:
parent
dd1265bea7
commit
a84e7669f0
24 changed files with 1113 additions and 289 deletions
|
@ -1,9 +1,46 @@
|
|||
{
|
||||
"sambanova": [
|
||||
"bedrock": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"boto3",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"cerebras": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"cerebras_cloud_sdk",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
|
@ -27,7 +64,76 @@
|
|||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"fireworks": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"hf-endpoint": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"hf-serverless": [
|
||||
"aiohttp",
|
||||
|
@ -62,211 +168,7 @@
|
|||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"together": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"vllm",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"remote-vllm": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"fireworks": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"tgi": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"bedrock": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"boto3",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"meta-reference-gpu": [
|
||||
"accelerate",
|
||||
|
@ -306,39 +208,7 @@
|
|||
"uvicorn",
|
||||
"zmq",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"nvidia": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"meta-reference-quantized-gpu": [
|
||||
"accelerate",
|
||||
|
@ -380,40 +250,7 @@
|
|||
"uvicorn",
|
||||
"zmq",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"cerebras": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"cerebras_cloud_sdk",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"ollama": [
|
||||
"aiohttp",
|
||||
|
@ -447,9 +284,42 @@
|
|||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"hf-endpoint": [
|
||||
"remote-vllm": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"tgi": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
|
@ -482,6 +352,170 @@
|
|||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"together": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"vllm",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"nvidia": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"sambanova": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"dell": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
]
|
||||
}
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# NVIDIA Distribution
|
||||
|
||||
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Bedrock Distribution
|
||||
|
||||
```{toctree}
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Cerebras Distribution
|
||||
|
||||
The `llamastack/distribution-cerebras` distribution consists of the following provider configurations.
|
||||
|
|
186
docs/source/distributions/self_hosted_distro/dell.md
Normal file
186
docs/source/distributions/self_hosted_distro/dell.md
Normal file
|
@ -0,0 +1,186 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
||||
# Dell Distribution of Llama Stack
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-dell` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::tgi` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8181`)
|
||||
- `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8282`)
|
||||
- `CHROMA_URL`: URL for the Chroma server (default: `http://localhost:6601`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
||||
## Setting up Inference server using Dell Enterprise Hub's custom TGI container.
|
||||
|
||||
NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8181
|
||||
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
export CHROMADB_HOST=localhost
|
||||
export CHROMADB_PORT=6601
|
||||
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT --hostname 0.0.0.0
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--hostname 0.0.0.0 \
|
||||
--port $SAFETY_INFERENCE_PORT
|
||||
```
|
||||
|
||||
## Dell distribution relies on ChromaDB for vector database usage
|
||||
|
||||
You can start a chroma-db easily using docker.
|
||||
```bash
|
||||
# This is where the indices are persisted
|
||||
mkdir -p $HOME/chromadb
|
||||
|
||||
podman run --rm -it \
|
||||
--network host \
|
||||
--name chromadb \
|
||||
-v $HOME/chromadb:/chroma/chroma \
|
||||
-e IS_PERSISTENT=TRUE \
|
||||
chromadb/chroma:latest \
|
||||
--port $CHROMADB_PORT \
|
||||
--host $CHROMADB_HOST
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
docker run -it \
|
||||
--network host \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $HOME/.llama:/root/.llama \
|
||||
# NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed
|
||||
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \
|
||||
# localhost/distribution-dell:dev if building / testing locally
|
||||
llamastack/distribution-dell\
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
# You need a local checkout of llama-stack to run this, get it using
|
||||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $HOME/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-dell \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template dell --image-type conda
|
||||
llama stack run dell
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -82,7 +83,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-gpu --image-type conda
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -82,7 +83,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-quantized-gpu --image-type conda
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -103,7 +104,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -131,7 +132,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -122,7 +123,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template tgi --image-type conda
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
|
|
@ -125,7 +125,7 @@ ensure_conda_env_python310() {
|
|||
fi
|
||||
|
||||
printf "Installing from LLAMA_MODELS_DIR: $LLAMA_MODELS_DIR\n"
|
||||
uv pip uninstall -y llama-models
|
||||
uv pip uninstall llama-models
|
||||
uv pip install --no-cache-dir -e "$LLAMA_MODELS_DIR"
|
||||
fi
|
||||
|
||||
|
|
|
@ -89,7 +89,7 @@ run() {
|
|||
fi
|
||||
|
||||
printf "Installing from LLAMA_MODELS_DIR: $LLAMA_MODELS_DIR\n"
|
||||
uv pip uninstall -y llama-models
|
||||
uv pip uninstall llama-models
|
||||
uv pip install --no-cache-dir -e "$LLAMA_MODELS_DIR"
|
||||
fi
|
||||
|
||||
|
|
|
@ -26,6 +26,7 @@ from llama_stack.apis.inference import (
|
|||
Message,
|
||||
ResponseFormat,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
|
|
|
@ -17,9 +17,6 @@ import httpx
|
|||
import numpy as np
|
||||
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from pypdf import PdfReader
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -33,6 +30,9 @@ from llama_stack.providers.datatypes import Api
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from pypdf import PdfReader
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
|
7
llama_stack/templates/dell/__init__.py
Normal file
7
llama_stack/templates/dell/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .dell import get_distribution_template # noqa: F401
|
32
llama_stack/templates/dell/build.yaml
Normal file
32
llama_stack/templates/dell/build.yaml
Normal file
|
@ -0,0 +1,32 @@
|
|||
version: '2'
|
||||
distribution_spec:
|
||||
description: Dell's distribution of Llama Stack. TGI inference via Dell's custom
|
||||
container
|
||||
providers:
|
||||
inference:
|
||||
- remote::tgi
|
||||
vector_io:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
- inline::code-interpreter
|
||||
- inline::rag-runtime
|
||||
image_type: conda
|
151
llama_stack/templates/dell/dell.py
Normal file
151
llama_stack/templates/dell/dell.py
Normal file
|
@ -0,0 +1,151 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.distribution.datatypes import (
|
||||
ModelInput,
|
||||
Provider,
|
||||
ShieldInput,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::tgi"],
|
||||
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
"inline::code-interpreter",
|
||||
"inline::rag-runtime",
|
||||
],
|
||||
}
|
||||
name = "dell"
|
||||
inference_provider = Provider(
|
||||
provider_id="tgi0",
|
||||
provider_type="remote::tgi",
|
||||
config={
|
||||
"url": "${env.DEH_URL}",
|
||||
},
|
||||
)
|
||||
safety_inference_provider = Provider(
|
||||
provider_id="tgi1",
|
||||
provider_type="remote::tgi",
|
||||
config={
|
||||
"url": "${env.DEH_SAFETY_URL}",
|
||||
},
|
||||
)
|
||||
embedding_provider = Provider(
|
||||
provider_id="sentence-transformers",
|
||||
provider_type="inline::sentence-transformers",
|
||||
config=SentenceTransformersInferenceConfig.sample_run_config(),
|
||||
)
|
||||
chromadb_provider = Provider(
|
||||
provider_id="chromadb",
|
||||
provider_type="remote::chromadb",
|
||||
config={
|
||||
"url": "${env.CHROMA_URL}",
|
||||
},
|
||||
)
|
||||
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="tgi0",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="tgi1",
|
||||
)
|
||||
embedding_model = ModelInput(
|
||||
model_id="all-MiniLM-L6-v2",
|
||||
provider_id="sentence-transformers",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
},
|
||||
)
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="brave-search",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::rag",
|
||||
provider_id="rag-runtime",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::code_interpreter",
|
||||
provider_id="code-interpreter",
|
||||
),
|
||||
]
|
||||
|
||||
return DistributionTemplate(
|
||||
name=name,
|
||||
distro_type="self_hosted",
|
||||
description="Dell's distribution of Llama Stack. TGI inference via Dell's custom container",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=[inference_model, embedding_model],
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider, embedding_provider],
|
||||
"vector_io": [chromadb_provider],
|
||||
},
|
||||
default_models=[inference_model, embedding_model],
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
safety_inference_provider,
|
||||
embedding_provider,
|
||||
],
|
||||
"vector_io": [chromadb_provider],
|
||||
},
|
||||
default_models=[inference_model, safety_model, embedding_model],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"DEH_URL": (
|
||||
"http://0.0.0.0:8181",
|
||||
"URL for the Dell inference server",
|
||||
),
|
||||
"DEH_SAFETY_URL": (
|
||||
"http://0.0.0.0:8282",
|
||||
"URL for the Dell safety inference server",
|
||||
),
|
||||
"CHROMA_URL": (
|
||||
"http://localhost:6601",
|
||||
"URL for the Chroma server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Inference model loaded into the TGI server",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta-llama/Llama-Guard-3-1B",
|
||||
"Name of the safety (Llama-Guard) model to use",
|
||||
),
|
||||
},
|
||||
)
|
174
llama_stack/templates/dell/doc_template.md
Normal file
174
llama_stack/templates/dell/doc_template.md
Normal file
|
@ -0,0 +1,174 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
|
||||
# Dell Distribution of Llama Stack
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
## Setting up Inference server using Dell Enterprise Hub's custom TGI container.
|
||||
|
||||
NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8181
|
||||
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
export CHROMADB_HOST=localhost
|
||||
export CHROMADB_PORT=6601
|
||||
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT --hostname 0.0.0.0
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--hostname 0.0.0.0 \
|
||||
--port $SAFETY_INFERENCE_PORT
|
||||
```
|
||||
|
||||
## Dell distribution relies on ChromaDB for vector database usage
|
||||
|
||||
You can start a chroma-db easily using docker.
|
||||
```bash
|
||||
# This is where the indices are persisted
|
||||
mkdir -p $HOME/chromadb
|
||||
|
||||
podman run --rm -it \
|
||||
--network host \
|
||||
--name chromadb \
|
||||
-v $HOME/chromadb:/chroma/chroma \
|
||||
-e IS_PERSISTENT=TRUE \
|
||||
chromadb/chroma:latest \
|
||||
--port $CHROMADB_PORT \
|
||||
--host $CHROMADB_HOST
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
docker run -it \
|
||||
--network host \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $HOME/.llama:/root/.llama \
|
||||
# NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed
|
||||
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \
|
||||
# localhost/distribution-dell:dev if building / testing locally
|
||||
llamastack/distribution-{{ name }}\
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
# You need a local checkout of llama-stack to run this, get it using
|
||||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $HOME/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
llama stack run {{ name }}
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
118
llama_stack/templates/dell/run-with-safety.yaml
Normal file
118
llama_stack/templates/dell/run-with-safety.yaml
Normal file
|
@ -0,0 +1,118 @@
|
|||
version: '2'
|
||||
image_name: dell
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.DEH_URL}
|
||||
- provider_id: tgi1
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.DEH_SAFETY_URL}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
vector_io:
|
||||
- provider_id: chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMA_URL}
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/dell/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config: {}
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config: {}
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: code-interpreter
|
||||
provider_type: inline::code-interpreter
|
||||
config: {}
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: tgi1
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
- toolgroup_id: builtin::code_interpreter
|
||||
provider_id: code-interpreter
|
109
llama_stack/templates/dell/run.yaml
Normal file
109
llama_stack/templates/dell/run.yaml
Normal file
|
@ -0,0 +1,109 @@
|
|||
version: '2'
|
||||
image_name: dell
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.DEH_URL}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
vector_io:
|
||||
- provider_id: chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMA_URL}
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/dell/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config: {}
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config: {}
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: code-interpreter
|
||||
provider_type: inline::code-interpreter
|
||||
config: {}
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
- toolgroup_id: builtin::code_interpreter
|
||||
provider_id: code-interpreter
|
|
@ -9,7 +9,6 @@ from typing import Dict, List, Literal, Optional, Tuple
|
|||
|
||||
import jinja2
|
||||
import yaml
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.distribution.datatypes import (
|
||||
|
@ -25,6 +24,7 @@ from llama_stack.distribution.datatypes import (
|
|||
from llama_stack.distribution.distribution import get_provider_registry
|
||||
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class RunConfigSettings(BaseModel):
|
||||
|
@ -131,7 +131,8 @@ class DistributionTemplate(BaseModel):
|
|||
providers_str = ", ".join(f"`{p}`" for p in providers)
|
||||
providers_table += f"| {api} | {providers_str} |\n"
|
||||
|
||||
template = self.template_path.read_text()
|
||||
template = "<!-- This file was auto-generated by distro_codegen.py, please edit source -->\n"
|
||||
template += self.template_path.read_text()
|
||||
# Render template with rich-generated table
|
||||
env = jinja2.Environment(
|
||||
trim_blocks=True,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue