llama-stack/docs/source/distributions/remote_hosted_distro/nvidia.md
Hardik Shah a84e7669f0
feat: Add a new template for dell (#978)
- Added new template `dell` and its documentation 
- Update docs 
- [minor] uv fix i came across 
- codegen for all templates 

Tested with 

```bash
export INFERENCE_PORT=8181
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
export CHROMADB_HOST=localhost
export CHROMADB_PORT=6601
export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank)
export CUDA_VISIBLE_DEVICES=0
export LLAMA_STACK_PORT=8321

# build the stack template 
llama stack build --template=dell 

# start the TGI inference server 
podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0

# start chroma-db for vector-io ( aka RAG )
podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname)

# build docker 
llama stack build --template=dell --image-type=container

# run llama stack server ( via docker )
podman run -it \
--network host \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
# NOTE: mount the llama-stack / llama-model directories if testing local changes 
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \
--port $LLAMA_STACK_PORT  \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env CHROMA_URL=$CHROMA_URL

# test the server 
cd <PATH_TO_LLAMA_STACK_REPO>
LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py

```

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-02-06 14:14:39 -08:00

2.5 KiB

NVIDIA Distribution

The llamastack/distribution-nvidia distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference remote::nvidia
safety inline::llama-guard
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::rag-runtime, remote::model-context-protocol
vector_io inline::faiss

Environment Variables

The following environment variables can be configured:

  • LLAMASTACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • NVIDIA_API_KEY: NVIDIA API Key (default: ``)

Models

The following models are available by default:

  • meta-llama/Llama-3-8B-Instruct (meta/llama3-8b-instruct)
  • meta-llama/Llama-3-70B-Instruct (meta/llama3-70b-instruct)
  • meta-llama/Llama-3.1-8B-Instruct (meta/llama-3.1-8b-instruct)
  • meta-llama/Llama-3.1-70B-Instruct (meta/llama-3.1-70b-instruct)
  • meta-llama/Llama-3.1-405B-Instruct-FP8 (meta/llama-3.1-405b-instruct)
  • meta-llama/Llama-3.2-1B-Instruct (meta/llama-3.2-1b-instruct)
  • meta-llama/Llama-3.2-3B-Instruct (meta/llama-3.2-3b-instruct)
  • meta-llama/Llama-3.2-11B-Vision-Instruct (meta/llama-3.2-11b-vision-instruct)
  • meta-llama/Llama-3.2-90B-Vision-Instruct (meta/llama-3.2-90b-vision-instruct)

Prerequisite: API Keys

Make sure you have access to a NVIDIA API Key. You can get one by visiting https://build.nvidia.com/.

Running Llama Stack with NVIDIA

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ./run.yaml:/root/my-run.yaml \
  llamastack/distribution-nvidia \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env NVIDIA_API_KEY=$NVIDIA_API_KEY

Via Conda

llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
  --port 5001 \
  --env NVIDIA_API_KEY=$NVIDIA_API_KEY
  --env INFERENCE_MODEL=$INFERENCE_MODEL