forked from phoenix-oss/llama-stack-mirror
- Added new template `dell` and its documentation - Update docs - [minor] uv fix i came across - codegen for all templates Tested with ```bash export INFERENCE_PORT=8181 export DEH_URL=http://0.0.0.0:$INFERENCE_PORT export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct export CHROMADB_HOST=localhost export CHROMADB_PORT=6601 export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank) export CUDA_VISIBLE_DEVICES=0 export LLAMA_STACK_PORT=8321 # build the stack template llama stack build --template=dell # start the TGI inference server podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0 # start chroma-db for vector-io ( aka RAG ) podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname) # build docker llama stack build --template=dell --image-type=container # run llama stack server ( via docker ) podman run -it \ --network host \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ # NOTE: mount the llama-stack / llama-model directories if testing local changes -v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL # test the server cd <PATH_TO_LLAMA_STACK_REPO> LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py ``` --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
2.5 KiB
2.5 KiB
NVIDIA Distribution
The llamastack/distribution-nvidia
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | remote::nvidia |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::rag-runtime , remote::model-context-protocol |
vector_io | inline::faiss |
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT
: Port for the Llama Stack distribution server (default:5001
)NVIDIA_API_KEY
: NVIDIA API Key (default: ``)
Models
The following models are available by default:
meta-llama/Llama-3-8B-Instruct (meta/llama3-8b-instruct)
meta-llama/Llama-3-70B-Instruct (meta/llama3-70b-instruct)
meta-llama/Llama-3.1-8B-Instruct (meta/llama-3.1-8b-instruct)
meta-llama/Llama-3.1-70B-Instruct (meta/llama-3.1-70b-instruct)
meta-llama/Llama-3.1-405B-Instruct-FP8 (meta/llama-3.1-405b-instruct)
meta-llama/Llama-3.2-1B-Instruct (meta/llama-3.2-1b-instruct)
meta-llama/Llama-3.2-3B-Instruct (meta/llama-3.2-3b-instruct)
meta-llama/Llama-3.2-11B-Vision-Instruct (meta/llama-3.2-11b-vision-instruct)
meta-llama/Llama-3.2-90B-Vision-Instruct (meta/llama-3.2-90b-vision-instruct)
Prerequisite: API Keys
Make sure you have access to a NVIDIA API Key. You can get one by visiting https://build.nvidia.com/.
Running Llama Stack with NVIDIA
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
Via Conda
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
--env INFERENCE_MODEL=$INFERENCE_MODEL