llama-stack/docs/source/distributions/self_hosted_distro/meta-reference-gpu.md
Hardik Shah a84e7669f0
feat: Add a new template for dell (#978)
- Added new template `dell` and its documentation 
- Update docs 
- [minor] uv fix i came across 
- codegen for all templates 

Tested with 

```bash
export INFERENCE_PORT=8181
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
export CHROMADB_HOST=localhost
export CHROMADB_PORT=6601
export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank)
export CUDA_VISIBLE_DEVICES=0
export LLAMA_STACK_PORT=8321

# build the stack template 
llama stack build --template=dell 

# start the TGI inference server 
podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0

# start chroma-db for vector-io ( aka RAG )
podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname)

# build docker 
llama stack build --template=dell --image-type=container

# run llama stack server ( via docker )
podman run -it \
--network host \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
# NOTE: mount the llama-stack / llama-model directories if testing local changes 
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \
--port $LLAMA_STACK_PORT  \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env CHROMA_URL=$CHROMA_URL

# test the server 
cd <PATH_TO_LLAMA_STACK_REPO>
LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py

```

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-02-06 14:14:39 -08:00

3.6 KiB


orphan: true

Meta Reference Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-meta-reference-gpu distribution consists of the following provider configurations:

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference inline::meta-reference
safety inline::llama-guard
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::rag-runtime, remote::model-context-protocol
vector_io inline::faiss, remote::chromadb, remote::pgvector

Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.

Environment Variables

The following environment variables can be configured:

  • LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • INFERENCE_MODEL: Inference model loaded into the Meta Reference server (default: meta-llama/Llama-3.2-3B-Instruct)
  • INFERENCE_CHECKPOINT_DIR: Directory containing the Meta Reference model checkpoint (default: null)
  • SAFETY_MODEL: Name of the safety (Llama-Guard) model to use (default: meta-llama/Llama-Guard-3-1B)
  • SAFETY_CHECKPOINT_DIR: Directory containing the Llama-Guard model checkpoint (default: null)

Prerequisite: Downloading Models

Please make sure you have llama model checkpoints downloaded in ~/.llama before proceeding. See installation guide here to download the models. Run llama model list to see the available models to download, and llama model download to download the checkpoints.

$ ls ~/.llama/checkpoints
Llama3.1-8B           Llama3.2-11B-Vision-Instruct  Llama3.2-1B-Instruct  Llama3.2-90B-Vision-Instruct  Llama-Guard-3-8B
Llama3.1-8B-Instruct  Llama3.2-1B                   Llama3.2-3B-Instruct  Llama-Guard-3-1B              Prompt-Guard-86M

Running the Distribution

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  llamastack/distribution-meta-reference-gpu \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct

If you are using Llama Stack Safety / Shield APIs, use:

docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  llamastack/distribution-meta-reference-gpu \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
  --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B

Via Conda

Make sure you have done uv pip install llama-stack and have the Llama Stack CLI available.

llama stack build --template meta-reference-gpu --image-type conda
llama stack run distributions/meta-reference-gpu/run.yaml \
  --port 5001 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct

If you are using Llama Stack Safety / Shield APIs, use:

llama stack run distributions/meta-reference-gpu/run-with-safety.yaml \
  --port 5001 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
  --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B