Commit graph

90 commits

Author SHA1 Message Date
Xi Yan
bc0cd07008 Merge branch 'main' into eval_api_final 2025-03-26 12:29:45 -07:00
Rashmi Pawar
1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00
Xi Yan
7f12ea290f
feat(eval api): (2.3/n) remove scoring / eval impls + benchmarks (#1766)
# What does this PR do?
- Remove `/eval` and `/scoring` impls
- Clean up benchmarks. The benchmarks exists in the `llama-stack-evals`
repo.
- Rest of grading functions will be added in follow up PR. 

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
- CI

[//]: # (## Documentation)
2025-03-23 16:51:17 -07:00
Xi Yan
3f8c7a584a precommit 2025-03-23 16:00:48 -07:00
Xi Yan
a54d757ade merge 2025-03-23 15:48:14 -07:00
Hardik Shah
127bac6869
fix: Default to port 8321 everywhere (#1734)
As titled, moved all instances of 5001 to 8321
2025-03-20 15:50:41 -07:00
Charlie Doern
a483a58c6e
chore: deprecate /v1/inspect/providers (#1678)
# What does this PR do?

with the new /v1/providers API, /v1/inspect/providers is duplicative,
deprecate it by removing the route, and add a test for the full
/v1/providers API

resolves #1623 

## Test Plan

`uv run pytest -v tests/integration/providers --stack-config=ollama
--text-model="meta-llama/Llama-3.2-3B-Instruct"
--embedding-model=all-MiniLM-L6-v2`

<img width="1512" alt="Screenshot 2025-03-18 at 9 18 38 AM"
src="https://github.com/user-attachments/assets/2db30f25-3ff6-4374-b39d-0047f093fe36"
/>

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-19 20:27:06 -07:00
Botao Chen
f369871083
feat: [New Eval Benchamark] IfEval (#1708)
# What does this PR do?
In this PR, we added a new eval open benchmark IfEval based on paper
https://arxiv.org/abs/2311.07911 to measure the model capability of
instruction following.


## Test Plan
spin up a llama stack server with open-benchmark template

run `llama-stack-client --endpoint xxx eval run-benchmark
"meta-reference-ifeval" --model-id "meta-llama/Llama-3.3-70B-Instruct"
--output-dir "/home/markchen1015/" --num-examples 20` on client side and
get the eval aggregate results
2025-03-19 16:39:59 -07:00
Xi Yan
c1d18283d2
feat(eval api): (2.2/n) delete eval / scoring / scoring_fn apis (#1700)
# What does this PR do?
- To make it easier, delete existing `eval/scoring/scoring_function`
apis. There will be a bunch of broken impls here. The sequence is:
1. migrate benchmark graders
2. clean up existing scoring functions

- Add a skeleton evaluation impl to make tests pass. 

## Test Plan
tested in following PRs

[//]: # (## Documentation)
2025-03-19 11:04:23 -07:00
cdgamarose-nv
252a487085
feat: added nvidia as safety provider (#1248)
# What does this PR do?
Adds nvidia as a safety provider by interfacing with the nemo guardrails
microservice.
This enables checking user’s input or the LLM’s output against input and
output guardrails by using the `/v1/guardrails/checks` endpoint of the[
guardrails
API.](https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/guides/checks-guide.html)

## Test Plan
Deploy nemo guardrails service following the documentation:
https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/getting-started/deploy-docker.html

### Standalone:
```bash
(venv) local-cdgamarose@a1u1g-rome-0153:~/llama-stack$ pytest -v -s llama_stack/providers/tests/safety/test_safety.py --providers inference=nvidia,safety=nvidia --safety-shield meta/llama-3.1-8b-instruct

=================================================================================== test session starts ===================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/llama-stack/venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.12', 'Platform': 'Linux-5.15.0-122-generic-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'html': '4.1.1'}}
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, html-4.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items

llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_shield_list[--inference=nvidia:safety=nvidia] Initializing NVIDIASafetyAdapter(http://0.0.0.0:7331)...
PASSED
llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_run_shield[--inference=nvidia:safety=nvidia] PASSED

============================================================================== 2 passed, 2 warnings in 4.78s ==============================================================================

```
### Distribution:
```
llama stack run llama_stack/templates/nvidia/run-with-safety.yaml
curl -v -X 'POST' "http://localhost:8321/v1/safety/run-shield" -H 'accept: application/json' -H 'Content-Type: application/json' -d '{"shield_id": "meta/llama-3.1-8b-instruct", "messages":[{"role": "user", "content": "you are stupid"}]}'
{"violation":{"violation_level":"error","user_message":"Sorry I cannot do this.","metadata":{"self check input":{"status":"blocked"}}}}
```

[//]: # (## Documentation)

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-17 14:39:23 -07:00
yyymeta
a626b7bce3
feat: [new open benchmark] BFCL_v3 (#1578)
# What does this PR do?
create a new dataset BFCL_v3 from
https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html

overall each question asks the model to perform a task described in
natural language, and additionally a set of available functions and
their schema are given for the model to choose from. the model is
required to write the function call form including function name and
parameters , to achieve the stated purpose. the results are validated
against provided ground truth, to make sure that the generated function
call and the ground truth function call are syntactically and
semantically equivalent, by checking their AST .



## Test Plan

start server by 

```
llama stack run ./llama_stack/templates/ollama/run.yaml
```

then send traffic
```
 llama-stack-client eval run-benchmark "bfcl"  --model-id   meta-llama/Llama-3.2-3B-Instruct    --output-dir /tmp/gpqa    --num-examples   2
```




[//]: # (## Documentation)
2025-03-14 12:50:49 -07:00
Xi Yan
9617468d13
fix: passthrough provider template + fix (#1612)
# What does this PR do?

- Fix issue w/ passthrough provider


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
llama stack run

[//]: # (## Documentation)
2025-03-13 09:44:26 -07:00
Botao Chen
0b0be70605
feat: Add open benchmark template codegen (#1579)
## What does this PR do?

As title, add codegen for open-benchmark template

## test 

checked the new generated run.yaml file and it's identical before and
after the change

Also add small improvement to together template so that missing
TOGETHER_API_KEY won't crash the server which is the consistent user
experience as other remote providers
2025-03-12 11:12:08 -07:00
Josh Salomon
5f90be5388
fix: Fixed bad file name in inline::localfs (#1358)
Bug https://github.com/meta-llama/llama-stack/issues/1357

# What does this PR do?
Fix a bug of a wrong file name in inline::localfs datasetio provider

[//]: # (If resolving an issue, uncomment and update the line below)
# (Closes #1357)

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Josh Salomon <jsalomon@redhat.com>
2025-03-11 12:46:11 -07:00
Ashwin Bharambe
dc84bc755a
fix: revert to using faiss for ollama distro (#1530)
This is unfortunate because `sqlite-vec` seems promising. But its PIP
package is not quite complete. It does not have binary for arm64 (I
think, or maybe it even lacks 64 bit builds?) which results in the arm64
container resulting in
```
File "/usr/local/lib/python3.10/site-packages/sqlite_vec/init.py", line 17, in load
    conn.load_extension(loadable_path())
sqlite3.OperationalError: /usr/local/lib/python3.10/site-packages/sqlite_vec/vec0.so: wrong ELF class: ELFCLASS32
```

To get around I tried to install from source via `uv pip install
sqlite-vec --no-binary=sqlite-vec` however it even lacks a source
distribution which makes that impossible.

## Test Plan

Build the container locally using: 

```bash
LLAMA_STACK_DIR=. llama stack build --template ollama --image-type container
```

Run the container as: 

```
podman run --privileged -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
   -v ~/.llama:/root/.llama \
    --env INFERENCE_MODEL=$INFERENCE_MODEL \
    --env OLLAMA_URL=http://host.containers.internal:11434 \
    -v ~/local/llama-stack:/app/llama-stack-source 
    localhost/distribution-ollama:dev --port $LLAMA_STACK_PORT
```

Verify the container starts up correctly. Without this patch, it would
encounter the ELFCLASS32 error.
2025-03-10 16:15:17 -07:00
Botao Chen
89e449c2cb
fix: Fix open benchmark template (#1496)
## What does this PR do?
Delete the open_benchmark template which was generated by the auto
codegen by accident
2025-03-07 14:49:10 -08:00
Botao Chen
4dccf916d1
feat: open benchmark template and doc (#1465)
## What does this PR do?
- Provide a distro template to let developer easily run the open
benchmarks llama stack supports on llama and non-llama models.
- Provide doc on how to run open benchmark eval via CLI and open
benchmark contributing guide

[//]: # (If resolving an issue, uncomment and update the line below)
(Closes #1375 )

## Test Plan
open benchmark eval results on llama, gpt, gemini and clause
<img width="771" alt="Screenshot 2025-03-06 at 7 33 05 PM"
src="https://github.com/user-attachments/assets/1bd85456-b9b9-4b37-af76-4ce1d2bac00e"
/>

doc preview
<img width="944" alt="Screenshot 2025-03-06 at 7 33 58 PM"
src="https://github.com/user-attachments/assets/f4e5866d-b395-4c40-aa8b-080edeb5cdb6"
/>
<img width="955" alt="Screenshot 2025-03-06 at 7 34 04 PM"
src="https://github.com/user-attachments/assets/629defb6-d5e4-473c-aa03-308bce386fb4"
/>

<img width="965" alt="Screenshot 2025-03-06 at 7 35 29 PM"
src="https://github.com/user-attachments/assets/c21ff96c-9e8c-4c54-b6b8-25883125f4cf"
/>

<img width="957" alt="Screenshot 2025-03-06 at 7 35 37 PM"
src="https://github.com/user-attachments/assets/47571c90-1381-4e2c-bbed-c4f3a60578d0"
/>
2025-03-07 10:37:55 -08:00
Ashwin Bharambe
6e8dfa727d fix: precommits ugh why wont they run correctly because they dont have the right dependencies 2025-02-27 15:02:04 -08:00
Ashwin Bharambe
928a39d17b
feat(providers): Groq now uses LiteLLM openai-compat (#1303)
Groq has never supported raw completions anyhow. So this makes it easier
to switch it to LiteLLM. All our test suite passes.

I also updated all the openai-compat providers so they work with api
keys passed from headers. `provider_data`

## Test Plan

```bash
LLAMA_STACK_CONFIG=groq \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=groq/llama-3.3-70b-versatile --vision-inference-model=""
```

Also tested (openai, anthropic, gemini) providers. No regressions.
2025-02-27 13:16:50 -08:00
Shrey
30ef1c3680
feat: Add model context protocol tools with ollama provider (#1283)
# What does this PR do?
Model context protocol (MCP) allows for remote tools to be connected
with Agents. The current Ollama provider does not support it. This PR
adds necessary code changes to ensure that the integration between
Ollama backend and MCP works.

This PR is an extension of #816 for Ollama. 

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

1. Run llama-stack server with the command:
```
llama stack build --template ollama --image-type conda
llama stack run ./templates/ollama/run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://localhost:11434
```

2. Run the sample client agent with MCP tool:
```
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types.shared_params.url import URL
from llama_stack_client import LlamaStackClient
from termcolor import cprint

## Start the local MCP server
# git clone https://github.com/modelcontextprotocol/python-sdk
# Follow instructions to get the env ready
# cd examples/servers/simple-tool
# uv run mcp-simple-tool --transport sse --port 8000

# Connect to the llama stack server
base_url="http://localhost:8321"
model_id="meta-llama/Llama-3.2-3B-Instruct"
client = LlamaStackClient(base_url=base_url)


# Register MCP tools
client.toolgroups.register(
    toolgroup_id="mcp::filesystem",
    provider_id="model-context-protocol",
    mcp_endpoint=URL(uri="http://localhost:8000/sse"))

# Define an agent with MCP toolgroup 
agent_config = AgentConfig(
    model=model_id,
    instructions="You are a helpful assistant",
    toolgroups=["mcp::filesystem"],
    input_shields=[],
    output_shields=[],
    enable_session_persistence=False,
)
agent = Agent(client, agent_config)
user_prompts = [
    "Fetch content from https://www.google.com and print the response"
]

# Run a session with the agent
session_id = agent.create_session("test-session")
for prompt in user_prompts:
    cprint(f"User> {prompt}", "green")
    response = agent.create_turn(
        messages=[
            {
                "role": "user",
                "content": prompt,
            }
        ],
        session_id=session_id,
    )
    for log in EventLogger().log(response):
        log.print()
```
# Documentation
The file docs/source/distributions/self_hosted_distro/ollama.md is
updated to indicate the MCP tool runtime availability.

Signed-off-by: Shreyanand <shanand@redhat.com>
2025-02-26 15:38:18 -08:00
Ashwin Bharambe
63e6acd0c3
feat: add (openai, anthropic, gemini) providers via litellm (#1267)
# What does this PR do?

This PR introduces more non-llama model support to llama stack.
Providers introduced: openai, anthropic and gemini. All of these
providers use essentially the same piece of code -- the implementation
works via the `litellm` library.

We will expose only specific models for providers we enable making sure
they all work well and pass tests. This setup (instead of automatically
enabling _all_ providers and models allowed by LiteLLM) ensures we can
also perform any needed prompt tuning on a per-model basis as needed
(just like we do it for llama models.)

## Test Plan

```bash
#!/bin/bash

args=("$@")
for model in openai/gpt-4o anthropic/claude-3-5-sonnet-latest gemini/gemini-1.5-flash; do
    LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/inference/test_text_inference.py \
        --embedding-model=all-MiniLM-L6-v2 \
        --vision-inference-model="" \
        --inference-model=$model "${args[@]}"
done
```
2025-02-25 22:07:33 -08:00
Yuan Tang
eb743a3b26
build: Merge redundant "files" field for codegen check in .pre-commit-config.yaml (#1261)
# What does this PR do?

Merges the two "files" field for codegen check. This also fixes the
broken main branch CI build.

## Test Plan


```
Distribution Template Codegen............................................Passed
- hook id: distro-codegen
- duration: 367.44s

```

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-25 20:56:22 -08:00
Vladislav Bronzov
967cff4533
feat: Add Groq distribution template (#1173)
# What does this PR do?

Create a distribution template using Groq as inference provider.
Link to issue: https://github.com/meta-llama/llama-stack/issues/958


## Test Plan
Run `python llama_stack/scripts/distro_codegen.py` to generate run.yaml
and build.yaml
Test the newly created template by running
`llama stack build --template <template-name>`
`llama stack run <template-name>`
2025-02-25 14:16:56 -08:00
Ashwin Bharambe
9b0f783e54
test: add a ci-tests distro template for running e2e tests (#1237) 2025-02-24 14:43:21 -08:00
Ashwin Bharambe
992f865b2e
chore: move embedding deps to RAG tool where they are needed (#1210)
`EMBEDDING_DEPS` were wrongly associated with `vector_io` providers.
They are needed by
https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/utils/memory/vector_store.py#L142
and related code and is used by the RAG tool and as such should only be
needed by the `inline::rag-runtime` provider.
2025-02-21 11:33:41 -08:00
Ashwin Bharambe
11697f85c5
fix: pull ollama embedding model if necessary (#1209)
Embedding models are tiny and can be pulled on-demand. Let's do that so
the user doesn't have to do "yet another thing" to get themselves set
up.

Thanks @hardikjshah for the suggestion.

Also fixed a build dependency miss (TODO: distro_codegen needs to
actually check that the build template contains all providers mentioned
for the run.yaml file)

## Test Plan 

First run `ollama rm all-minilm:latest`. 

Run `llama stack build --template ollama && llama stack run ollama --env
INFERENCE_MODEL=llama3.2:3b-instruct-fp16`. See that it outputs a
"Pulling embedding model `all-minilm:latest`" output and the stack
starts up correctly. Verify that `ollama list` shows the model is
correctly downloaded.
2025-02-21 10:35:56 -08:00
Xi Yan
ce040ad111 precommit 2025-02-19 22:35:24 -08:00
Ellis Tarn
ab9516c789
fix: Gaps in doc codegen (#1035)
# What does this PR do?
Catches docs up to source with:
```
python llama_stack/scripts/distro_codegen.py
```

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Manually checked
```
sphinx-autobuild docs/source build/html
```

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
2025-02-10 13:24:15 -08:00
Hardik Shah
a84e7669f0
feat: Add a new template for dell (#978)
- Added new template `dell` and its documentation 
- Update docs 
- [minor] uv fix i came across 
- codegen for all templates 

Tested with 

```bash
export INFERENCE_PORT=8181
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
export CHROMADB_HOST=localhost
export CHROMADB_PORT=6601
export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank)
export CUDA_VISIBLE_DEVICES=0
export LLAMA_STACK_PORT=8321

# build the stack template 
llama stack build --template=dell 

# start the TGI inference server 
podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0

# start chroma-db for vector-io ( aka RAG )
podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname)

# build docker 
llama stack build --template=dell --image-type=container

# run llama stack server ( via docker )
podman run -it \
--network host \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
# NOTE: mount the llama-stack / llama-model directories if testing local changes 
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \
--port $LLAMA_STACK_PORT  \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env CHROMA_URL=$CHROMA_URL

# test the server 
cd <PATH_TO_LLAMA_STACK_REPO>
LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py

```

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-02-06 14:14:39 -08:00
Ashwin Bharambe
dfd6461498 kill old readme 2025-02-02 06:49:01 -08:00
snova-edwardm
aa65610e75
Sambanova - LlamaGuard (#886)
# What does this PR do?

- Fix loading SambaNovaImpl issue
- Add LlamaGuard model support for inference

## Test Plan

Run the following unit test scripts and results

### Embedding
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py --inference-model meta-llama/Llama-3.2-11B-Vision-Instruct --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```
```
llama_stack/providers/tests/inference/test_embeddings.py::TestEmbeddings::test_embeddings[-sambanova] SKIPPED (This test is only applicable for embedding models)
llama_stack/providers/tests/inference/test_embeddings.py::TestEmbeddings::test_batch_embeddings[-sambanova] SKIPPED (This test is only applicable for embedding models)

=================================================================================================================== 2 skipped, 1 warning in 0.32s ===================================================================================================================
```

### Vision
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_vision_inference.py --inference-model meta-llama/Llama-3.2-11B-Vision-Instruct --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```

```
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-sambanova-image0-expected_strings0] PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-sambanova-image1-expected_strings1] PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_streaming[-sambanova] PASSED

=================================================================================================================== 3 passed, 1 warning in 2.68s ====================================================================================================================
```

### Text
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[-sambanova] PASSED

=================================================================================================================== 1 passed, 1 warning in 0.46s ====================================================================================================================
```

```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming --env SAMBANOVA_API_KEY={SAMBANOVA_API_KEY}
```

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[-sambanova] PASSED

=================================================================================================================== 1 passed, 1 warning in 0.48s ====================================================================================================================
```




## Before submitting

- [] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [Y] Ran pre-commit to handle lint / formatting issues.
- [Y] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [Y] Updated relevant documentation.
- [Y] Wrote necessary unit or integration tests.
2025-01-27 15:46:30 -08:00
Hardik Shah
2cebb24d3a
Update doc templates for running safety on self-hosted templates (#874) 2025-01-24 11:28:20 -08:00
snova-edwardm
22dc684da6
Sambanova inference provider (#555)
# What does this PR do?

This PR adds SambaNova as one of the Provider

- Add SambaNova as a provider

## Test Plan
Test the functional command
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py llama_stack/providers/tests/inference/test_prompt_adapter.py llama_stack/providers/tests/inference/test_text_inference.py llama_stack/providers/tests/inference/test_vision_inference.py --env SAMBANOVA_API_KEY=<sambanova-api-key>
```

Test the distribution template:
```
# Docker
LLAMA_STACK_PORT=5001
docker run -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-sambanova \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY

# Conda
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

## Source
[SambaNova API Documentation](https://cloud.sambanova.ai/apis)

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [Y] Ran pre-commit to handle lint / formatting issues.
- [Y] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [Y] Updated relevant documentation.
- [Y ] Wrote necessary unit or integration tests.

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-01-23 12:20:28 -08:00
Marut Pandya
e2b5456e48
Add Runpod Provider + Distribution (#362)
Add Runpod as a inference provider for openAI compatible managed
endpoints.

Testing 
- Configured llama stack from scratch, set `remote::runpod` as a
inference provider.
- Added Runpod Endpoint URL and API key. 
- Started llama-stack server - llama stack run my-local-stack --port
3000
```
curl http://localhost:5000/inference/chat_completion \
-H "Content-Type: application/json" \
-d '{
	"model": "Llama3.1-8B-Instruct",
	"messages": [
		{"role": "system", "content": "You are a helpful assistant."},
		{"role": "user", "content": "Write me a 2 sentence poem about the moon"}
	],
	"sampling_params": {"temperature": 0.7, "seed": 42, "max_tokens": 512}
}' ```

---------

Signed-off-by: pandyamarut <pandyamarut@gmail.com>
2025-01-23 12:19:02 -08:00
Xi Yan
74f6af8bbe
[CICD] add simple test step for docker build workflow, fix prefix bug (#821)
# What does this PR do?

**Main Thing**
- Add a simple test step before publishing docker image in workflow

**Side Fix**
- Docker push action fails recently due to extra prefix introduced. E.g.
see:
https://github.com/meta-llama/llama-stack/pull/802#issuecomment-2599507062

cc @terrytangyuan 

## Test Plan

1. Release a TestPyPi version on this code: 0.0.63.dev51206766


3581203331

```
# 1. build docker image
TEST_PYPI_VERSION=0.0.63.dev51206766 llama stack build --template fireworks

# 2. test the docker image
cd distributions/fireworks && docker compose up
```

4. Test the full build + test docker flow using TestPyPi from (1):
1284218494

<img width="1049" alt="image"
src="https://github.com/user-attachments/assets/c025893d-5ce2-48ff-aa90-de00e105ee09"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-18 15:16:05 -08:00
Dinesh Yeduguru
3d4c53dfec
add mcp runtime as default to all providers (#816)
# What does this PR do?

This is needed to have the notebook work with MCP
2025-01-17 16:40:58 -08:00
Yuan Tang
6da3053c0e
More generic image type for OCI-compliant container technologies (#802)
It's a more generic term and applicable to alternatives of Docker, such
as Podman or other OCI-compliant technologies.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-17 16:37:42 -08:00
Xi Yan
9d005154d7
fix vllm template (#813)
# What does this PR do?

- Fix vLLM template to resolve
https://github.com/meta-llama/llama-stack/issues/805
- Fix agents test with shields

## Test Plan

```
vllm serve meta-llama/Llama-3.1-8B-Instruct
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack run ./llama_stack/templates/remote-vllm/run.yaml
```

```
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v ./tests/client-sdk/
```

<img width="1245" alt="image"
src="https://github.com/user-attachments/assets/9af27684-5a9c-4187-b338-cbfc5211bd99"
/>


- custom tool flaky due to model outputs
- /completions API not implemented

**Vision Model**
- 11B-Vision-Instruct
<img width="1240" alt="image"
src="https://github.com/user-attachments/assets/1d3b3b17-fa09-43a7-b56c-3f77263825c5"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-17 15:34:29 -08:00
Xi Yan
d1f3b032c9
cerebras template update for memory (#792)
# What does this PR do?

- we no longer have meta-reference as memory provider, update cerebras
template


## Test Plan

```
python llama_stack/scripts/distro_codegen.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-16 16:07:53 -08:00
Ashwin Bharambe
03ac84a829 Update default port from 5000 -> 8321 2025-01-16 15:26:48 -08:00
Xi Yan
a6b9f2cec7
fix cerebras template (#790)
# What does this PR do?

- fix cerebras template

## Test Plan

```
llama stack build --template cerebras --image-type conda
llama stack run cerebras
LLAMA_STACK_BASE_URL="http://localhost:5000" pytest -v tests/client-sdk/ --html=report.html --self-contained-html
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-16 13:53:06 -08:00
Xi Yan
b76bef169c
fix nvidia inference provider (#781)
# What does this PR do?

- fixes to nvidia inference provider to account for strategy update
- update nvidia templates

## Test Plan

```
llama stack run ./llama_stack/templates/nvidia/run.yaml --port 5000

LLAMA_STACK_BASE_URL="http://localhost:5000" pytest -v tests/client-sdk/inference/test_inference.py --html=report.html --self-contained-html
```
<img width="1288" alt="image"
src="https://github.com/user-attachments/assets/d20f9aea-525e-47de-a5be-586e022e0d55"
/>

**NOTE**
- vision inference broken
- tool calling broken
- /completion broken

cc @mattf @cdgamarose-nv  for improving NVIDIA inference adapter

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-15 18:49:36 -08:00
Xi Yan
27e07b44b5 remove inline-nvidia templates 2025-01-15 14:15:56 -08:00
cdgamarose-nv
b3202bcf77
add nvidia distribution (#565)
# What does this PR do?

adds nvidia template for creating a distribution using inference adapter
for NVIDIA NIMs.

## Test Plan

Please describe:
Build llama stack distribution for nvidia using the template, docker and
conda.
```bash
(.venv) local-cdgamarose@a4u8g-0006:~/llama-stack$ llama-stack-client configure --endpoint http://localhost:5000
Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:5000
(.venv) local-cdgamarose@a4u8g-0006:~/llama-stack$ llama-stack-client models list
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃ identifier                       ┃ provider_id ┃ provider_resource_id       ┃ metadata ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
│ Llama3.1-8B-Instruct             │ nvidia      │ meta/llama-3.1-8b-instruct │ {}       │
│ meta-llama/Llama-3.2-3B-Instruct │ nvidia      │ meta/llama-3.2-3b-instruct │ {}       │
└──────────────────────────────────┴─────────────┴────────────────────────────┴──────────┘
(.venv) local-cdgamarose@a4u8g-0006:~/llama-stack$ llama-stack-client inference chat-completion --message "hello, write me a 2 sentence poem"
ChatCompletionResponse(
    completion_message=CompletionMessage(
        content='Here is a 2 sentence poem:\n\nThe sun sets slow and paints the sky, \nA gentle hue of pink that makes me sigh.',
        role='assistant',
        stop_reason='end_of_turn',
        tool_calls=[]
    ),
    logprobs=None
)
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
2025-01-15 14:04:43 -08:00
Yuan Tang
300e6e2702
Fix issue when generating distros (#755)
Addressed comment
https://github.com/meta-llama/llama-stack/pull/723#issuecomment-2581902075.

cc @yanxi0830 

I am not 100% sure if the diff is correct though but this is the result
of running `python llama_stack/scripts/distro_codegen.py`.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-15 05:34:08 -08:00
raghotham
ff182ff6de
rename LLAMASTACK_PORT to LLAMA_STACK_PORT for consistency with other env vars (#744)
# What does this PR do?

Rename environment var for consistency

## Test Plan

No regressions

## Sources

## Before submitting

- [X] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [X] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-10 11:09:49 -08:00
Dinesh Yeduguru
a5c57cd381
agents to use tools api (#673)
# What does this PR do?

PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator


## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

pytest -s -v -k together  llama_stack/providers/tests/tools/test_tools.py \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994

Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
2025-01-08 19:01:00 -08:00
Xi Yan
7a4383e4c1
add 3.3 to together inference provider (#729)
# What does this PR do?

- add llama3.3 model for together
- fix fireworks distro_codegen

```
python llama_stack/scripts/distro_codegen.py
```

## Test Plan

<img width="1132" alt="image"
src="https://github.com/user-attachments/assets/bf94b933-9200-4e73-878e-d1a95d450a88"
/>

**Tests**
```
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.3-70B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
```
<img width="1139" alt="image"
src="https://github.com/user-attachments/assets/407dc98b-8de3-4841-8cb1-75e4b5128544"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-06 15:39:41 -08:00
Botao Chen
36b4fe02cc
[4/n][torchtune integration] support lazy load model during inference (#620)
## What does this PR do?
In this PR, we refactor the meta reference inference logic to support 
- load the model during registering model instead of during spinning up
server
- support inference finetuned model checkpoint on top of native llama
model

## Why need these changes
To solve the existing pain points that 
- user cannot lazy load the model and hot switch the inference
checkpoint after spinning up the server
- this blocks us doing inference and eval on the same sever for a
finetuned checkpoint after post training
- user cannot do inference on a finetuned checkpoint on top of native
llama models

## Expect user experience change
- The inference model won't be loaded when spinning up server. Instead,
it will be loaded during register model. If user add the model as models
resource in run.yaml, it will be registered and loaded automatically
when starting server. There is an optional flag 'skip_initialize' in
model metadata to skip model loading during registration.
- There is an optional flag 'llama_model' in model metadata to identify
the base model of the Model class for validation and initialize model
arch. model identifier no longer needs to be a native llama model
- the default inference model name updates from
'meta-llama/Llama-3.2-3B-Instruct' to 'Llama3.2-3B-Instruct'
- It aligns with the checkpoint folder name after running 'llama model
download'
- It aligns with the descriptor name defined in llama-models SKU list
bf5b0c4fe7/models/datatypes.py (L95)


## test
run python llama_stack/scripts/distro_codegen.py


**run unit test**
- torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.1-8B-Instruct"
./llama_stack/providers/tests/inference/test_text_inference.py
- torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.1-8B-Instruct"
./llama_stack/providers/tests/inference/test_model_registration.py


**test post training experience**
on server side run: llama stack run
llama_stack/templates/experimental-post-training/run.yaml
server is spinning up without model loaded

<img width="812" alt="Screenshot 2024-12-17 at 1 24 50 PM"
src="https://github.com/user-attachments/assets/ce1f606b-3b6f-452f-b48e-b3761ffd90f3"
/>

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 models register
Llama3.2-3B-Instruct
register model successfully and the model is loaded 
<img width="1111" alt="Screenshot 2024-12-17 at 1 26 30 PM"
src="https://github.com/user-attachments/assets/56e02131-cf7d-4de5-8f63-fbdcb8c55c26"
/>


<img width="1541" alt="Screenshot 2024-12-17 at 1 26 09 PM"
src="https://github.com/user-attachments/assets/a83255a1-20f5-40a2-af51-55641410a115"
/>

if add "skip_initialize" in metadata, model is registered but isn't
loaded

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 inference chat-completion
--message "hello, what model are you?"

Inference the model succesfully
<img width="1121" alt="Screenshot 2024-12-17 at 1 27 33 PM"
src="https://github.com/user-attachments/assets/8e708545-3fe7-4a73-8754-1470fa5f1e75"
/>

**test inference experience**
run: llama stack run llama_stack/templates/meta-reference-gpu/run.yaml
model is loaded since the model is in resouce list in run.yaml 
<img width="1537" alt="Screenshot 2024-12-17 at 1 30 19 PM"
src="https://github.com/user-attachments/assets/5c8af817-66eb-43f8-bf4c-f5e24b0a12c6"
/>

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 inference chat-completion
--message "hello, what model are you?"
inference successfully 
<img width="1123" alt="Screenshot 2024-12-17 at 1 31 08 PM"
src="https://github.com/user-attachments/assets/471809aa-c65e-46dc-a37e-7094fb857f97"
/>



## inference on a finetuned model
**register a finetuned model that finetuned by post training api
(torchtune)**
- the model is registered and loaded successfully 
- the model is shown up in the model list 
<img width="974" alt="Screenshot 2024-12-18 at 3 56 33 PM"
src="https://github.com/user-attachments/assets/2994b4f5-4fa9-40c6-acc6-4b971479f3e2"
/>

**run inference**

<img width="977" alt="Screenshot 2024-12-18 at 3 57 59 PM"
src="https://github.com/user-attachments/assets/d117abbc-b2a0-41d8-a028-1a13128787b2"
/>
2024-12-18 16:30:53 -08:00
Dinesh Yeduguru
516e1a3e59
add embedding model by default to distribution templates (#617)
# What does this PR do?
Adds the sentence transformer provider and the `all-MiniLM-L6-v2`
embedding model to the default models to register in the run.yaml for
all providers.

## Test Plan
llama stack build --template together --image-type conda
llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-13 12:48:00 -08:00