Commit graph

100 commits

Author SHA1 Message Date
Xi Yan
bc0cd07008 Merge branch 'main' into eval_api_final 2025-03-26 12:29:45 -07:00
Ihar Hrachyshka
367c08f01e
feat(api): don't return a payload on file delete (#1640)
# What does this PR do?

This is to stay consistent with other APIs.

This change registers files in API, even though there are still no
providers. Removing tests that require a provider existing for a merged
API to enable it in API layer.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-25 17:12:36 -07:00
Rashmi Pawar
1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00
Xi Yan
81bc051411 fix precommit 2025-03-23 16:32:06 -07:00
Xi Yan
64388de068 precommit 2025-03-23 16:15:08 -07:00
Xi Yan
3f8c7a584a precommit 2025-03-23 16:00:48 -07:00
Xi Yan
a54d757ade merge 2025-03-23 15:48:14 -07:00
Derek Higgins
00917ef5b2
fix: Add 'accelerate' dependency to 'prompt-guard' (#1724)
Required to startup a distribution with prompt guard

Closes: #1723

## Test Plan
distribution starts with patch applied

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-03-21 07:37:20 -07:00
Botao Chen
f369871083
feat: [New Eval Benchamark] IfEval (#1708)
# What does this PR do?
In this PR, we added a new eval open benchmark IfEval based on paper
https://arxiv.org/abs/2311.07911 to measure the model capability of
instruction following.


## Test Plan
spin up a llama stack server with open-benchmark template

run `llama-stack-client --endpoint xxx eval run-benchmark
"meta-reference-ifeval" --model-id "meta-llama/Llama-3.3-70B-Instruct"
--output-dir "/home/markchen1015/" --num-examples 20` on client side and
get the eval aggregate results
2025-03-19 16:39:59 -07:00
Xi Yan
c1d18283d2
feat(eval api): (2.2/n) delete eval / scoring / scoring_fn apis (#1700)
# What does this PR do?
- To make it easier, delete existing `eval/scoring/scoring_function`
apis. There will be a bunch of broken impls here. The sequence is:
1. migrate benchmark graders
2. clean up existing scoring functions

- Add a skeleton evaluation impl to make tests pass. 

## Test Plan
tested in following PRs

[//]: # (## Documentation)
2025-03-19 11:04:23 -07:00
Daniele Martinoli
cca9bd6cc3
feat: Qdrant inline provider (#1273)
# What does this PR do?
Removed local execution option from the remote Qdrant provider and
introduced an explicit inline provider for the embedded execution.
Updated the ollama template to include this option: this part can be
reverted in case we don't want to have two default `vector_io`
providers.

(Closes #1082)

## Test Plan
Build and run an ollama distro:
```bash
llama stack build --template ollama --image-type conda
llama stack run --image-type conda ollama
```

Run one of the sample ingestionapplicatinos like
[rag_with_vector_db.py](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py),
but replace this line:
```py
    selected_vector_provider = vector_providers[0]
```
with the following, to use the `qdrant` provider:
```py
    selected_vector_provider = vector_providers[1]
```

After running the test code, verify the timestamp of the Qdrant store:
```bash
% ls -ltr ~/.llama/distributions/ollama/qdrant.db/collection/test_vector_db_*
total 784
-rw-r--r--@ 1 dmartino  staff  401408 Feb 26 10:07 storage.sqlite
```

[//]: # (## Documentation)

---------

Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
Co-authored-by: Francisco Arceo <farceo@redhat.com>
2025-03-18 14:04:21 -07:00
cdgamarose-nv
252a487085
feat: added nvidia as safety provider (#1248)
# What does this PR do?
Adds nvidia as a safety provider by interfacing with the nemo guardrails
microservice.
This enables checking user’s input or the LLM’s output against input and
output guardrails by using the `/v1/guardrails/checks` endpoint of the[
guardrails
API.](https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/guides/checks-guide.html)

## Test Plan
Deploy nemo guardrails service following the documentation:
https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/getting-started/deploy-docker.html

### Standalone:
```bash
(venv) local-cdgamarose@a1u1g-rome-0153:~/llama-stack$ pytest -v -s llama_stack/providers/tests/safety/test_safety.py --providers inference=nvidia,safety=nvidia --safety-shield meta/llama-3.1-8b-instruct

=================================================================================== test session starts ===================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/llama-stack/venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.12', 'Platform': 'Linux-5.15.0-122-generic-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'html': '4.1.1'}}
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, html-4.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items

llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_shield_list[--inference=nvidia:safety=nvidia] Initializing NVIDIASafetyAdapter(http://0.0.0.0:7331)...
PASSED
llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_run_shield[--inference=nvidia:safety=nvidia] PASSED

============================================================================== 2 passed, 2 warnings in 4.78s ==============================================================================

```
### Distribution:
```
llama stack run llama_stack/templates/nvidia/run-with-safety.yaml
curl -v -X 'POST' "http://localhost:8321/v1/safety/run-shield" -H 'accept: application/json' -H 'Content-Type: application/json' -d '{"shield_id": "meta/llama-3.1-8b-instruct", "messages":[{"role": "user", "content": "you are stupid"}]}'
{"violation":{"violation_level":"error","user_message":"Sorry I cannot do this.","metadata":{"self check input":{"status":"blocked"}}}}
```

[//]: # (## Documentation)

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-17 14:39:23 -07:00
yyymeta
a626b7bce3
feat: [new open benchmark] BFCL_v3 (#1578)
# What does this PR do?
create a new dataset BFCL_v3 from
https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html

overall each question asks the model to perform a task described in
natural language, and additionally a set of available functions and
their schema are given for the model to choose from. the model is
required to write the function call form including function name and
parameters , to achieve the stated purpose. the results are validated
against provided ground truth, to make sure that the generated function
call and the ground truth function call are syntactically and
semantically equivalent, by checking their AST .



## Test Plan

start server by 

```
llama stack run ./llama_stack/templates/ollama/run.yaml
```

then send traffic
```
 llama-stack-client eval run-benchmark "bfcl"  --model-id   meta-llama/Llama-3.2-3B-Instruct    --output-dir /tmp/gpqa    --num-examples   2
```




[//]: # (## Documentation)
2025-03-14 12:50:49 -07:00
Ashwin Bharambe
d072b5fa0c
test: add unit test to ensure all config types are instantiable (#1601) 2025-03-12 22:29:58 -07:00
Ashwin Bharambe
dc84bc755a
fix: revert to using faiss for ollama distro (#1530)
This is unfortunate because `sqlite-vec` seems promising. But its PIP
package is not quite complete. It does not have binary for arm64 (I
think, or maybe it even lacks 64 bit builds?) which results in the arm64
container resulting in
```
File "/usr/local/lib/python3.10/site-packages/sqlite_vec/init.py", line 17, in load
    conn.load_extension(loadable_path())
sqlite3.OperationalError: /usr/local/lib/python3.10/site-packages/sqlite_vec/vec0.so: wrong ELF class: ELFCLASS32
```

To get around I tried to install from source via `uv pip install
sqlite-vec --no-binary=sqlite-vec` however it even lacks a source
distribution which makes that impossible.

## Test Plan

Build the container locally using: 

```bash
LLAMA_STACK_DIR=. llama stack build --template ollama --image-type container
```

Run the container as: 

```
podman run --privileged -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
   -v ~/.llama:/root/.llama \
    --env INFERENCE_MODEL=$INFERENCE_MODEL \
    --env OLLAMA_URL=http://host.containers.internal:11434 \
    -v ~/local/llama-stack:/app/llama-stack-source 
    localhost/distribution-ollama:dev --port $LLAMA_STACK_PORT
```

Verify the container starts up correctly. Without this patch, it would
encounter the ELFCLASS32 error.
2025-03-10 16:15:17 -07:00
Ashwin Bharambe
330cc9d09d
feat: add Milvus vectorDB (#1467)
# What does this PR do?
See https://github.com/meta-llama/llama-stack/pull/1171 which is the
original PR. Author: @zc277584121

feat: add [Milvus](https://milvus.io/) vectorDB

note: I use the MilvusClient to implement it instead of
AsyncMilvusClient, because when I tested AsyncMilvusClient, it would
raise issues about evenloop, which I think AsyncMilvusClient SDK is not
robust enough to be compatible with llama_stack framework.

## Test Plan
have passed the unit test and ene2end test
Here is my end2end test logs, including the client code, client log,
server logs from inline and remote settings

[test_end2end_logs.zip](https://github.com/user-attachments/files/18964391/test_end2end_logs.zip)

---------

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Cheney Zhang <chen.zhang@zilliz.com>
2025-03-06 20:59:31 -08:00
Ashwin Bharambe
4780223544 fix: groq now depends on litellm 2025-02-27 14:07:12 -08:00
Ashwin Bharambe
928a39d17b
feat(providers): Groq now uses LiteLLM openai-compat (#1303)
Groq has never supported raw completions anyhow. So this makes it easier
to switch it to LiteLLM. All our test suite passes.

I also updated all the openai-compat providers so they work with api
keys passed from headers. `provider_data`

## Test Plan

```bash
LLAMA_STACK_CONFIG=groq \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=groq/llama-3.3-70b-versatile --vision-inference-model=""
```

Also tested (openai, anthropic, gemini) providers. No regressions.
2025-02-27 13:16:50 -08:00
Ashwin Bharambe
63e6acd0c3
feat: add (openai, anthropic, gemini) providers via litellm (#1267)
# What does this PR do?

This PR introduces more non-llama model support to llama stack.
Providers introduced: openai, anthropic and gemini. All of these
providers use essentially the same piece of code -- the implementation
works via the `litellm` library.

We will expose only specific models for providers we enable making sure
they all work well and pass tests. This setup (instead of automatically
enabling _all_ providers and models allowed by LiteLLM) ensures we can
also perform any needed prompt tuning on a per-model basis as needed
(just like we do it for llama models.)

## Test Plan

```bash
#!/bin/bash

args=("$@")
for model in openai/gpt-4o anthropic/claude-3-5-sonnet-latest gemini/gemini-1.5-flash; do
    LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/inference/test_text_inference.py \
        --embedding-model=all-MiniLM-L6-v2 \
        --vision-inference-model="" \
        --inference-model=$model "${args[@]}"
done
```
2025-02-25 22:07:33 -08:00
Ashwin Bharambe
992f865b2e
chore: move embedding deps to RAG tool where they are needed (#1210)
`EMBEDDING_DEPS` were wrongly associated with `vector_io` providers.
They are needed by
https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/utils/memory/vector_store.py#L142
and related code and is used by the RAG tool and as such should only be
needed by the `inline::rag-runtime` provider.
2025-02-21 11:33:41 -08:00
Botao Chen
2b995c22eb
feat: inference passthrough provider (#1166)
##  What does this PR do?
In this PR, we implement a passthrough inference provider that works for
any endpoints that respect llama stack inference API definition.

## Test Plan
config some endpoint that respect llama stack inference API definition
and got the inference results successfully

<img width="1268" alt="Screenshot 2025-02-19 at 8 52 51 PM"
src="https://github.com/user-attachments/assets/447816e4-ea7a-4365-b90c-386dc7dcf4a1"
/>
2025-02-19 21:47:00 -08:00
Yuan Tang
5858777ff0
fix: Update VectorIO config classes in registry (#1079)
This was missed in https://github.com/meta-llama/llama-stack/pull/1023. 

```
Traceback (most recent call last):
  File "/home/yutang/.conda/envs/distribution-myenv/lib/python3.10/runpy.py", line 196, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/home/yutang/.conda/envs/distribution-myenv/lib/python3.10/runpy.py", line 86, in _run_code
    exec(code, run_globals)
  File "/home/yutang/repos/llama-stack/llama_stack/distribution/server/server.py", line 488, in <module>
    main()
  File "/home/yutang/repos/llama-stack/llama_stack/distribution/server/server.py", line 389, in main
    impls = asyncio.run(construct_stack(config))
  File "/home/yutang/.conda/envs/distribution-myenv/lib/python3.10/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/home/yutang/.conda/envs/distribution-myenv/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
    return future.result()
  File "/home/yutang/repos/llama-stack/llama_stack/distribution/stack.py", line 202, in construct_stack
    impls = await resolve_impls(run_config, provider_registry or get_provider_registry(), dist_registry)
  File "/home/yutang/repos/llama-stack/llama_stack/distribution/resolver.py", line 230, in resolve_impls
    impl = await instantiate_provider(
  File "/home/yutang/repos/llama-stack/llama_stack/distribution/resolver.py", line 312, in instantiate_provider
    config_type = instantiate_class_type(provider_spec.config_class)
  File "/home/yutang/repos/llama-stack/llama_stack/distribution/utils/dynamic.py", line 13, in instantiate_class_type
    return getattr(module, class_name)
AttributeError: module 'llama_stack.providers.inline.vector_io.faiss' has no attribute 'FaissImplConfig'

```

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-13 15:39:13 -08:00
Francisco Arceo
119fe8742a
feat: Adding sqlite-vec as a vectordb (#1040)
# What does this PR do?
This PR adds `sqlite_vec` as an additional inline vectordb.

Tested with `ollama` by adding the `vector_io` object in
`./llama_stack/templates/ollama/run.yaml` :

```yaml
  vector_io:
  - provider_id: sqlite_vec
    provider_type: inline::sqlite_vec
    config:
      kvstore:
        type: sqlite
        namespace: null
        db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
      db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
```
I also updated the `./tests/client-sdk/vector_io/test_vector_io.py` test
file with:
```python
INLINE_VECTOR_DB_PROVIDERS = ["faiss", "sqlite_vec"]
```
And parameterized the relevant tests. 

[//]: # (If resolving an issue, uncomment and update the line below)
# Closes 
https://github.com/meta-llama/llama-stack/issues/1005

## Test Plan
I ran the tests with:
```bash
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
```
Which outputs:
```python
...
PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_retrieve[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_list PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[sqlite_vec] PASSED
```

In addition, I ran the `rag_with_vector_db.py`
[example](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py)
using the script below with `uv run rag_example.py`.
<details>
<summary>CLICK TO SHOW SCRIPT 👋  </summary>

```python
#!/usr/bin/env python3
import os
import uuid
from termcolor import cprint

# Set environment variables
os.environ['INFERENCE_MODEL'] = 'llama3.2:3b-instruct-fp16'
os.environ['LLAMA_STACK_CONFIG'] = 'ollama'

# Import libraries after setting environment variables
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types import Document


def main():
    # Initialize the client
    client = LlamaStackAsLibraryClient("ollama")
    vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"

    _ = client.initialize()

    model_id = 'llama3.2:3b-instruct-fp16'

    # Define the list of document URLs and create Document objects
    urls = [
        "chat.rst",
        "llama3.rst",
        "memory_optimizations.rst",
        "lora_finetune.rst",
    ]
    documents = [
        Document(
            document_id=f"num-{i}",
            content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
            mime_type="text/plain",
            metadata={},
        )
        for i, url in enumerate(urls)
    ]
    # (Optional) Use the documents as needed with your client here

    client.vector_dbs.register(
        provider_id='sqlite_vec',
        vector_db_id=vector_db_id,
        embedding_model="all-MiniLM-L6-v2",
        embedding_dimension=384,
    )

    client.tool_runtime.rag_tool.insert(
        documents=documents,
        vector_db_id=vector_db_id,
        chunk_size_in_tokens=512,
    )
    # Create agent configuration
    agent_config = AgentConfig(
        model=model_id,
        instructions="You are a helpful assistant",
        enable_session_persistence=False,
        toolgroups=[
            {
                "name": "builtin::rag",
                "args": {
                    "vector_db_ids": [vector_db_id],
                }
            }
        ],
    )

    # Instantiate the Agent
    agent = Agent(client, agent_config)

    # List of user prompts
    user_prompts = [
        "What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
        "Was anything related to 'Llama3' discussed, if so what?",
        "Tell me how to use LoRA",
        "What about Quantization?",
    ]

    # Create a session for the agent
    session_id = agent.create_session("test-session")

    # Process each prompt and display the output
    for prompt in user_prompts:
        cprint(f"User> {prompt}", "green")
        response = agent.create_turn(
            messages=[
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            session_id=session_id,
        )
        # Log and print events from the response
        for log in EventLogger().log(response):
            log.print()


if __name__ == "__main__":
    main()
```
</details>

Which outputs a large summary of RAG generation.

# Documentation

Will handle documentation updates in follow-up PR.

# (- [ ] Added a Changelog entry if the change is significant)

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-02-12 10:50:03 -08:00
Ashwin Bharambe
f98efe68c9
Misc fixes (#944)
- Make sure torch + torchvision go together as deps, otherwise bad stuff
happens
- Add a pre-commit for requirements.txt
2025-02-03 14:08:47 -08:00
Ashwin Bharambe
d78027f3b5 Move runpod provider to the correct directory
Also cleanup the test code to avoid skipping tests. Let failures be
known and public.
2025-01-23 12:25:12 -08:00
snova-edwardm
22dc684da6
Sambanova inference provider (#555)
# What does this PR do?

This PR adds SambaNova as one of the Provider

- Add SambaNova as a provider

## Test Plan
Test the functional command
```
pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py llama_stack/providers/tests/inference/test_prompt_adapter.py llama_stack/providers/tests/inference/test_text_inference.py llama_stack/providers/tests/inference/test_vision_inference.py --env SAMBANOVA_API_KEY=<sambanova-api-key>
```

Test the distribution template:
```
# Docker
LLAMA_STACK_PORT=5001
docker run -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-sambanova \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY

# Conda
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

## Source
[SambaNova API Documentation](https://cloud.sambanova.ai/apis)

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [Y] Ran pre-commit to handle lint / formatting issues.
- [Y] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [Y] Updated relevant documentation.
- [Y ] Wrote necessary unit or integration tests.

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-01-23 12:20:28 -08:00
Marut Pandya
e2b5456e48
Add Runpod Provider + Distribution (#362)
Add Runpod as a inference provider for openAI compatible managed
endpoints.

Testing 
- Configured llama stack from scratch, set `remote::runpod` as a
inference provider.
- Added Runpod Endpoint URL and API key. 
- Started llama-stack server - llama stack run my-local-stack --port
3000
```
curl http://localhost:5000/inference/chat_completion \
-H "Content-Type: application/json" \
-d '{
	"model": "Llama3.1-8B-Instruct",
	"messages": [
		{"role": "system", "content": "You are a helpful assistant."},
		{"role": "user", "content": "Write me a 2 sentence poem about the moon"}
	],
	"sampling_params": {"temperature": 0.7, "seed": 42, "max_tokens": 512}
}' ```

---------

Signed-off-by: pandyamarut <pandyamarut@gmail.com>
2025-01-23 12:19:02 -08:00
Ashwin Bharambe
0bff6e1658 Move tool_runtime.memory -> tool_runtime.rag 2025-01-22 20:25:02 -08:00
Ashwin Bharambe
f3d8864c36 Rename builtin::memory -> builtin::rag 2025-01-22 20:22:51 -08:00
Ashwin Bharambe
1a7490470a
[memory refactor][3/n] Introduce RAGToolRuntime as a specialized sub-protocol (#832)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Third part:
- we need to make `tool_runtime.rag_tool.query_context()` and
`tool_runtime.rag_tool.insert_documents()` methods work smoothly with
complete type safety. To that end, we introduce a sub-resource path
`tool-runtime/rag-tool/` and make changes to the resolver to make things
work.
- the PR updates the agents implementation to directly call these typed
APIs for memory accesses rather than going through the complex, untyped
"invoke_tool" API. the code looks much nicer and simpler (expectedly.)
- there are a number of hacks in the server resolver implementation
still, we will live with some and fix some

Note that we must make sure the client SDKs are able to handle this
subresource complexity also. Stainless has support for subresources, so
this should be possible but beware.

## Test Plan

Our RAG test is sad (doesn't actually test for actual RAG output) but I
verified that the implementation works. I will work on fixing the RAG
test afterwards.

```bash
pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B
```
2025-01-22 10:04:16 -08:00
Ashwin Bharambe
78a481bb22
[memory refactor][2/n] Update faiss and make it pass tests (#830)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Second part:

- updates routing table / router code 
- updates the faiss implementation


## Test Plan

```
pytest -s -v -k sentence test_vector_io.py --env EMBEDDING_DIMENSION=384
```
2025-01-22 10:02:15 -08:00
Ashwin Bharambe
3ae8585b65
[memory refactor][1/n] Rename Memory -> VectorIO, MemoryBanks -> VectorDBs (#828)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

This is the first part:

- delete other kinds of memory banks (keyvalue, keyword, graph) for now;
we will introduce a keyvalue store API as part of this design but not
use it in the RAG tool yet.
- renaming of the APIs
2025-01-22 09:59:30 -08:00
Ashwin Bharambe
eb60f04f86
optional api dependencies (#793)
Co-authored-by: Dinesh Yeduguru <yvdinesh@gmail.com>
2025-01-17 15:26:53 -08:00
Botao Chen
35bf6ea75a
Pin torchtune pkg version (#791)
## context
This is the follow up of
https://github.com/meta-llama/llama-stack/pull/674. Since torchtune is
still in alpha stage and the apis are not guarantee backward compatible.
Pin the torchtune and torchao pkg version to avoid the latest torchtune
release breaks llama stack post training.

We will bump the version number manually after with the new pkg release
some testing

## test 
ping an old torchtune pkg version (0.4.0) and the 0.4.0 was installed 
<img width="1016" alt="Screenshot 2025-01-16 at 3 06 47 PM"
src="https://github.com/user-attachments/assets/630b05d0-8d0d-4e2f-8b48-22e578a62659"
/>
2025-01-16 16:31:13 -08:00
Dinesh Yeduguru
a5c57cd381
agents to use tools api (#673)
# What does this PR do?

PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator


## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

pytest -s -v -k together  llama_stack/providers/tests/tools/test_tools.py \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994

Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
2025-01-08 19:01:00 -08:00
Aidan Do
e1f42eb5a5
[#432] Add Groq Provider - chat completions (#609)
# What does this PR do?

Contributes towards issue (#432)

- Groq text chat completions
- Streaming
- All the sampling params that Groq supports

A lot of inspiration taken from @mattf's good work at
https://github.com/meta-llama/llama-stack/pull/355

**What this PR does not do**

- Tool calls (Future PR)
- Adding llama-guard model
- See if we can add embeddings

### PR Train

- https://github.com/meta-llama/llama-stack/pull/609 👈 
- https://github.com/meta-llama/llama-stack/pull/630


## Test Plan

<details>

<summary>Environment</summary>

```bash
export GROQ_API_KEY=<api_key>

wget https://raw.githubusercontent.com/aidando73/llama-stack/240e6e2a9c20450ffdcfbabd800a6c0291f19288/build.yaml
wget https://raw.githubusercontent.com/aidando73/llama-stack/92c9b5297f9eda6a6e901e1adbd894e169dbb278/run.yaml

# Build and run environment
pip install -e . \
&& llama stack build --config ./build.yaml --image-type conda \
&& llama stack run ./run.yaml \
  --port 5001
```

</details>

<details>

<summary>Manual tests</summary>

Using this jupyter notebook to test manually:
2140976d76/hello.ipynb

Use this code to test passing in the api key from provider_data

```
from llama_stack_client import LlamaStackClient

client = LlamaStackClient(
    base_url="http://localhost:5001",
)

response = client.inference.chat_completion(
    model_id="Llama3.2-3B-Instruct",
    messages=[
        {"role": "user", "content": "Hello, world client!"},
    ],
    # Test passing in groq_api_key from the client
    # Need to comment out the groq_api_key in the run.yaml file
    x_llama_stack_provider_data='{"groq_api_key": "<api-key>"}',
    # stream=True,
)
response
```

</details>

<details>
<summary>Integration</summary>

`pytest llama_stack/providers/tests/inference/test_text_inference.py -v
-k groq`

(run in same environment)

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_3b-groq] PASSED                 [  6%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_3b-groq] SKIPPED (Other inf...) [ 12%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_3b-groq] SKIPPED [ 18%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_3b-groq] PASSED [ 25%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_3b-groq] SKIPPED (Ot...) [ 31%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_3b-groq] PASSED  [ 37%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_3b-groq] SKIPPED [ 43%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_3b-groq] SKIPPED [ 50%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-groq] PASSED                 [ 56%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-groq] SKIPPED (Other inf...) [ 62%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_8b-groq] SKIPPED [ 68%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-groq] PASSED [ 75%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-groq] SKIPPED (Ot...) [ 81%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-groq] PASSED  [ 87%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-groq] SKIPPED [ 93%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-groq] SKIPPED [100%]

======================================= 6 passed, 10 skipped, 160 deselected, 7 warnings in 2.05s ========================================
```
</details>

<details>
<summary>Unit tests</summary>

`pytest llama_stack/providers/tests/inference/groq/ -v`

```
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_sets_model PASSED            [  5%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_user_message PASSED [ 10%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_system_message PASSED [ 15%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_completion_message PASSED [ 20%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_logprobs PASSED [ 25%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_response_format PASSED [ 30%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_repetition_penalty PASSED [ 35%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_stream PASSED       [ 40%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_n_is_1 PASSED                [ 45%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_if_max_tokens_is_0_then_it_is_not_included PASSED [ 50%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_max_tokens_if_set PASSED [ 55%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_temperature PASSED  [ 60%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_top_p PASSED        [ 65%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_returns_response PASSED [ 70%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_stop_to_end_of_message PASSED [ 75%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_length_to_end_of_message PASSED [ 80%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertStreamChatCompletionResponse::test_returns_stream PASSED [ 85%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_raises_runtime_error_if_config_is_not_groq_config PASSED [ 90%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_returns_groq_adapter PASSED                            [ 95%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqConfig::test_api_key_defaults_to_env_var PASSED                   [100%]

==================================================== 20 passed, 11 warnings in 0.08s =====================================================
```

</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation
- [x] Wrote necessary unit or integration tests.
2025-01-03 08:27:49 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Dinesh Yeduguru
c8be0bf1c9
Tools API with brave and MCP providers (#639)
This PR adds a new Tools api and adds two tool runtime providers: brave
and MCP.

Test plan:
```
curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{ "tool_group_id": "simple_tool",
  "tool_group": {
    "type": "model_context_protocol",
    "endpoint": {"uri": "http://localhost:56000/sse"}
  },
  "provider_id": "model-context-protocol"
}'

 curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{
  "tool_group_id": "search", "provider_id": "brave-search",
  "tool_group": {
    "type": "user_defined",
    "tools": [
      {
        "name": "brave_search",
        "description": "A web search tool",
        "parameters": [
          {
            "name": "query",
            "parameter_type": "string",
            "description": "The query to search"
          }
        ],
        "metadata": {},
        "tool_prompt_format": "json"
      }
    ]
  }
}'

 curl -X GET http://localhost:5000/alpha/tools/list | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   662  100   662    0     0   333k      0 --:--:-- --:--:-- --:--:--  646k
[
  {
    "identifier": "brave_search",
    "provider_resource_id": "brave_search",
    "provider_id": "brave-search",
    "type": "tool",
    "tool_group": "search",
    "description": "A web search tool",
    "parameters": [
      {
        "name": "query",
        "parameter_type": "string",
        "description": "The query to search"
      }
    ],
    "metadata": {},
    "tool_prompt_format": "json"
  },
  {
    "identifier": "fetch",
    "provider_resource_id": "fetch",
    "provider_id": "model-context-protocol",
    "type": "tool",
    "tool_group": "simple_tool",
    "description": "Fetches a website and returns its content",
    "parameters": [
      {
        "name": "url",
        "parameter_type": "string",
        "description": "URL to fetch"
      }
    ],
    "metadata": {
      "endpoint": "http://localhost:56000/sse"
    },
    "tool_prompt_format": "json"
  }
]

curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' \
-d '{
    "tool_name": "fetch",
    "args": {
        "url": "http://google.com/"
    }
}'

 curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' -H 'X-LlamaStack-ProviderData: {"api_key": "<KEY>"}' \
-d '{
    "tool_name": "brave_search",
    "args": {
        "query": "who is meta ceo"
    }
}'
```
2024-12-19 21:25:17 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Botao Chen
aeb76390fc
[1/n] torchtune <> llama-stack integration skeleton (#540)
### Context 
This is the 1st of series PRs that integrate torchtune with llama-stack
as meta reference post-training implementation. For MVP, we will focus
on single device LoRA SFT.

Though this PR is still WIP, we want to get early feedback on the high
level design of this skeleton while still working on several details

### Scope
To limit the scope of this PR, we focus on the skeleton of the
implementation.

**What are included?**
- refine the post-training SFT apis
- skeleton of supervised_fine_tune implementation. We verified that we
can call the supervised_fine_tune API successfully from llama stack
client SDK (client side PR:
https://github.com/meta-llama/llama-stack-client-python/pull/51)
- a very basic single device LoRA training recipe based on torchtune
core components
- parity check with torchtune library and post training api unit test

**What are not includes?**
- implementation of other job management, get training artifacts apis
(separate PR)
- refactor the meta reference inference logic to support eval on
finetuned model (separate PR)
- several necessary functionality in the training recipe such as
logging, validation etc (separate PR)
- interop with telemetry for tracing and metrics logging, currently
temporarily log to local disk (separate PR)

### Testing
**e2e test**
Although we haven't added detailed testing and numerical parity check
with torchtune yet, we did a simple E2E test from client to server
1. setup server with` llama stack build --template
experimental-post-training --image-type conda` and `llama stack run
experimental-post-training `
2. On client, run `llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 post_training
supervised_fine_tune`
3. Training finishes successfully. On server side, get the finetune
checkpoints under output dir. On client side, get the job uuid

server 
<img width="1110" alt="Screenshot 2024-12-02 at 5 52 32 PM"
src="https://github.com/user-attachments/assets/b548eb90-7a9b-4edc-a858-ee237cc4361d">

client 
<img width="807" alt="Screenshot 2024-12-02 at 5 52 37 PM"
src="https://github.com/user-attachments/assets/1138ffa8-4698-40fa-b190-3d7b99646838">

**parity check**
torchtune dataloader output and llama-stack post training dataloader
output are same
<img width="1116" alt="Screenshot 2024-12-04 at 8 18 46 PM"
src="https://github.com/user-attachments/assets/5e295cdc-4c24-4ea6-82c0-ca96ef1bd6ee">

torchtune LoRA SFT and llama-stack post training LoRA SFT on alpaca
dataset with llama3.2 3B instruct model are numerical match

<img width="860" alt="Screenshot 2024-12-04 at 8 17 01 PM"
src="https://github.com/user-attachments/assets/c05cf0a8-c674-4d2e-9f0a-c5d01b2dca99">

<img width="1049" alt="Screenshot 2024-12-04 at 8 17 06 PM"
src="https://github.com/user-attachments/assets/b911d4e2-e7b1-41a9-b62c-d75529b6d443">

**unit test ** 
![Uploading Screenshot 2024-12-09 at 1.35.10 PM.png…]()
2024-12-13 11:05:35 -08:00
Dinesh Yeduguru
96e158eaac
Make embedding generation go through inference (#606)
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models

This is a merge from #589 and #598
2024-12-12 11:47:50 -08:00
Ashwin Bharambe
b7cb06f004
Allow using an "inline" version of Chroma using PersistentClient (#567)
The same code is used (inside providers/remote/memory/chroma/chroma.py)
but it is driven by separate configurations and changes which Chroma
client to use. Note that the dependencies are separate
(`chromadb-client` vs `chromadb` -- the latter is a _much_ heavier
package.)

```
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_DB_PATH=/tmp/chroma_test
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_URL=http://localhost:6001
```
2024-12-11 16:02:04 -08:00
Dinesh Yeduguru
c23363d561
Add ability to query and export spans to dataset (#574)
This PR adds two new methods to the telemetry API:
1) Gives the ability to query spans directly instead of first querying
traces and then using that to get spans
2) Another method save_spans_to_dataset, which builds on the query spans
to save it on dataset.

This give the ability to saves spans that are part of an agent session
to a dataset.

The unique aspect of this API is that we dont require each provider of
telemetry to implement this method. Hence, its implemented in the
protocol class itself. This required the protocol check to be slightly
modified.
2024-12-05 21:07:30 -08:00
Dinesh Yeduguru
fcd6449519
Telemetry API redesign (#525)
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session

Addresses #509

## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000


 curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
  "attribute_filters": [
    {
      "key": "session_id",
      "op": "eq",
      "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
  "limit": 100,
  "offset": 0,
  "order_by": ["start_time"]
}' | jq .
[
  {
    "trace_id": "6902f54b83b4b48be18a6f422b13e16f",
    "root_span_id": "5f37b85543afc15a",
    "start_time": "2024-12-04T08:08:30.501587",
    "end_time": "2024-12-04T08:08:36.026463"
  },
  {
    "trace_id": "92227dac84c0615ed741be393813fb5f",
    "root_span_id": "af7c5bb46665c2c8",
    "start_time": "2024-12-04T08:08:36.031170",
    "end_time": "2024-12-04T08:08:41.693301"
  },
  {
    "trace_id": "7d578a6edac62f204ab479fba82f77b6",
    "root_span_id": "1d935e3362676896",
    "start_time": "2024-12-04T08:08:41.695204",
    "end_time": "2024-12-04T08:08:47.228016"
  },
  {
    "trace_id": "dbd767d76991bc816f9f078907dc9ff2",
    "root_span_id": "f5a7ee76683b9602",
    "start_time": "2024-12-04T08:08:47.234578",
    "end_time": "2024-12-04T08:08:53.189412"
  }
]


curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   875  100   790  100    85  18462   1986 --:--:-- --:--:-- --:--:-- 20833
{
  "span_id": "6cceb4b48a156913",
  "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
  "parent_span_id": "892a66d726c7f990",
  "name": "retrieve_rag_context",
  "start_time": "2024-12-04T09:28:21.781995",
  "end_time": "2024-12-04T09:28:21.913352",
  "attributes": {
    "input": [
      "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
      "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
    ]
  },
  "children": [
    {
      "span_id": "1a2df181854064a8",
      "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
      "parent_span_id": "6cceb4b48a156913",
      "name": "MemoryRouter.query_documents",
      "start_time": "2024-12-04T09:28:21.787620",
      "end_time": "2024-12-04T09:28:21.906512",
      "attributes": {
        "input": null
      },
      "children": [],
      "status": "ok"
    }
  ],
  "status": "ok"
}

```

<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
2024-12-04 11:22:45 -08:00
Henry Tu
64c6df8392
Cerebras Inference Integration (#265)
Adding Cerebras Inference as an API provider.

## Testing

### Conda
```
$ llama stack build --template cerebras --image-type conda
$ llama stack run ~/.llama/distributions/llamastack-cerebras/cerebras-run.yaml
...
Listening on ['::', '0.0.0.0']:5000
INFO:     Started server process [12443]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
```

### Chat Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/chat-completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "messages": [
        {
            "role": "user",
            "content": "What is the temperature in Seattle right now?"
        }
    ],
    "stream": false,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 100
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}' 
```

#### Non-Streaming Response
```
{
  "completion_message": {
    "role": "assistant",
    "content": "",
    "stop_reason": "end_of_message",
    "tool_calls": [
      {
        "call_id": "6f42fdcc-6cbb-46ad-a17b-5d20ac64b678",
        "tool_name": "getTemperature",
        "arguments": {
          "location": "Seattle"
        }
      }
    ]
  },
  "logprobs": null
}
```

#### Streaming Response
```
data: {"event":{"event_type":"start","delta":"","logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"","parse_status":"started"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"{\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"type","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"function","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"name","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"get","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Temperature","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"parameters","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" {\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"location","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Seattle","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\"}}","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":{"call_id":"e742df1f-0ae9-40ad-a49e-18e5c905484f","tool_name":"getTemperature","arguments":{"location":"Seattle"}},"parse_status":"success"},"logprobs":null,"stop_reason":"end_of_message"}}
data: {"event":{"event_type":"complete","delta":"","logprobs":null,"stop_reason":"end_of_message"}}
```

### Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "content": "1,2,3,",
    "stream": true,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 10
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}'
```

#### Non-Streaming Response
```
{
  "content": "4,5,6,7,8,",
  "stop_reason": "out_of_tokens",
  "logprobs": null
}
```

#### Streaming Response
```
data: {"delta":"4","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"5","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"6","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"7","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"8","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":"out_of_tokens","logprobs":null}
```

### Pre-Commit Checks
```
trim trailing whitespace.................................................Passed
check python ast.........................................................Passed
check for merge conflicts................................................Passed
check for added large files..............................................Passed
fix end of files.........................................................Passed
Insert license in comments...............................................Passed
flake8...................................................................Passed
Format files with µfmt...................................................Passed
```

### Testing with `test_inference.py`
```
$ export CEREBRAS_API_KEY=<insert API key here>
$ pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py -m "cerebras and llama_8b" 
/net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/lib/python3.12/site-packages/pytest_asyncio/plugin.py:208: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=================================================== test session starts ===================================================
platform linux -- Python 3.12.3, pytest-8.3.3, pluggy-1.5.0 -- /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/bin/python3.12
cachedir: .pytest_cache
rootdir: /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack
configfile: pyproject.toml
plugins: anyio-4.6.2.post1, asyncio-0.24.0
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 128 items / 120 deselected / 8 selected                                                                         

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-cerebras] Resolved 4 providers
 inner-inference => cerebras
 models => __routing_table__
 inference => __autorouted__
 inspect => __builtin__

Models: meta-llama/Llama-3.1-8B-Instruct served by cerebras

PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completions_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-cerebras] PASSED

================================ 6 passed, 2 skipped, 120 deselected, 6 warnings in 3.95s =================================
```

I ran `python llama_stack/scripts/distro_codegen.py` to run codegen.
2024-12-03 21:15:32 -08:00
Xi Yan
50cc165077
fixes tests & move braintrust api_keys to request headers (#535)
# What does this PR do?

- braintrust scoring provider requires OPENAI_API_KEY env variable to be
set
- move this to be able to be set as request headers (e.g. like together
/ fireworks api keys)
- fixes pytest with agents dependency

## Test Plan

**E2E**
```
llama stack run 
```
```yaml
scoring:
  - provider_id: braintrust-0
    provider_type: inline::braintrust
    config: {}
```

**Client**
```python
self.client = LlamaStackClient(
    base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:5000"),
    provider_data={
        "openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
    },
)
```
- run `llama-stack-client eval run_scoring`

**Unit Test**
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
```

```
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py --env OPENAI_API_KEY=$OPENAI_API_KEY
```
<img width="745" alt="image"
src="https://github.com/user-attachments/assets/68f5cdda-f6c8-496d-8b4f-1b3dabeca9c2">

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-26 13:11:21 -08:00
Matthew Farrellee
4e6c984c26
add NVIDIA NIM inference adapter (#355)
# What does this PR do?

this PR adds a basic inference adapter to NVIDIA NIMs

what it does -
 - chat completion api
   - tool calls
   - streaming
   - structured output
   - logprobs
 - support hosted NIM on integrate.api.nvidia.com
 - support downloaded NIM containers

what it does not do -
 - completion api
 - embedding api
 - vision models
 - builtin tools
 - have certainty that sampling strategies are correct

## Feature/Issue validation/testing/test plan

`pytest -s -v --providers inference=nvidia
llama_stack/providers/tests/inference/ --env NVIDIA_API_KEY=...`

all tests should pass. there are pydantic v1 warnings.


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
- [x] Did you write any new necessary tests?

Thanks for contributing 🎉!
2024-11-23 15:59:00 -08:00
Dalton Flanagan
b007b062f3
Fix llama stack build in 0.0.54 (#505)
# What does this PR do?

Safety provider `inline::meta-reference` is now deprecated. However, we 

* aren't checking / printing the deprecation message in `llama stack
build`
* make the deprecated (unusable) provider

So I (1) added checking and (2) made `inline::llama-guard` the default

## Test Plan

Before

```
Traceback (most recent call last):
  File "/home/dalton/.conda/envs/nov22/bin/llama", line 8, in <module>
    sys.exit(main())
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 46, in main
    parser.run(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 40, in run
    args.func(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 177, in _run_stack_build_command
    self._run_stack_build_command_from_build_config(build_config)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 305, in _run_stack_build_command_from_build_config
    self._generate_run_config(build_config, build_dir)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 226, in _generate_run_config
    config_type = instantiate_class_type(
  File "/home/dalton/all/llama-stack/llama_stack/distribution/utils/dynamic.py", line 12, in instantiate_class_type
    module = importlib.import_module(module_name)
  File "/home/dalton/.conda/envs/nov22/lib/python3.10/importlib/__init__.py", line 126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
  File "<frozen importlib._bootstrap>", line 1050, in _gcd_import
  File "<frozen importlib._bootstrap>", line 1027, in _find_and_load
  File "<frozen importlib._bootstrap>", line 1004, in _find_and_load_unlocked
ModuleNotFoundError: No module named 'llama_stack.providers.inline.safety.meta_reference'
```

After

```
Traceback (most recent call last):
  File "/home/dalton/.conda/envs/nov22/bin/llama", line 8, in <module>
    sys.exit(main())
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 46, in main
    parser.run(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 40, in run
    args.func(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 177, in _run_stack_build_command
    self._run_stack_build_command_from_build_config(build_config)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 309, in _run_stack_build_command_from_build_config
    self._generate_run_config(build_config, build_dir)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 228, in _generate_run_config
    raise InvalidProviderError(p.deprecation_error)
llama_stack.distribution.resolver.InvalidProviderError: 
Provider `inline::meta-reference` for API `safety` does not work with the latest Llama Stack.
- if you are using Llama Guard v3, please use the `inline::llama-guard` provider instead.
- if you are using Prompt Guard, please use the `inline::prompt-guard` provider instead.
- if you are using Code Scanner, please use the `inline::code-scanner` provider instead.
```

<img width="469" alt="Screenshot 2024-11-22 at 4 10 24 PM"
src="https://github.com/user-attachments/assets/8c2e09fe-379a-4504-b246-7925f80a6ed6">

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-22 16:23:44 -05:00
Xi Yan
0784284ab5
[Agentic Eval] add ability to run agents generation (#469)
# What does this PR do?

- add ability to run agents generation for full eval (generate +
scoring)
- pre-register SimpleQA  benchmark llm-as-judge scoring function in code


## Test Plan


![image](https://github.com/user-attachments/assets/b4b6f086-1be4-4c2a-8ab0-6839f0067c0a)


![image](https://github.com/user-attachments/assets/05bb7a09-2d7a-4031-8eb6-e1ca670ee439)


#### Simple QA w/ Search

![image](https://github.com/user-attachments/assets/0a51e3f3-9fc7-479b-8295-89aed63496e0)

- eval_task_config_simpleqa_search.json
```json
{
    "type": "benchmark",
    "eval_candidate": {
        "type": "agent",
        "config": {
            "model": "Llama3.1-405B-Instruct",
            "instructions": "Please use the search tool to answer the question.",
            "sampling_params": {
                "strategy": "greedy",
                "temperature": 1.0,
                "top_p": 0.9
            },
            "tools": [
                {
                    "type": "brave_search",
                    "engine": "brave",
                    "api_key": "API_KEY"
                }
            ],
            "tool_choice": "auto",
            "tool_prompt_format": "json",
            "input_shields": [],
            "output_shields": [],
            "enable_session_persistence": false
        }
    }
}
```

#### SimpleQA w/o Search

![image](https://github.com/user-attachments/assets/6301feef-2abb-4bee-b50c-97da1c90482b)


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-18 11:43:03 -08:00
Xi Yan
e8112b31ab
move hf addapter->remote (#459)
# What does this PR do?

- move folder
## Test Plan

**Unit Test**
```
pytest -v -s -m "huggingface" datasetio/test_datasetio.py
```

**E2E**
```
llama stack run 
```

```
llama-stack-client eval run_benchmark meta-reference-mmlu --num-examples 5 --output-dir ./ --eval-task-config ~/eval_task_config.json --visualize
```
<img width="657" alt="image"
src="https://github.com/user-attachments/assets/63d53f9d-6c7e-4667-af8c-9d16c91ae6e3">



## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-14 22:41:19 -05:00