### What does this PR do?
Currently, `ToolCall.arguments` is a `Dict[str, RecursiveType]`.
However, on the client SDK side -- the `RecursiveType` gets deserialized
into a number ( both int and float get collapsed ) and hence when params
are `int` they get converted to float which might break client side
tools that might be doing type checking.
Closes: https://github.com/meta-llama/llama-stack/issues/1683
### Test Plan
Stainless changes --
https://github.com/meta-llama/llama-stack-client-python/pull/204
```
pytest -s -v --stack-config=fireworks tests/integration/agents/test_agents.py --text-model meta-llama/Llama-3.1-8B-Instruct
```
# Summary:
Includes fixes to get test_agents working with openAI model, e.g. tool
parsing and message conversion
# Test Plan:
```
LLAMA_STACK_CONFIG=dev pytest -s -v tests/integration/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B --text-model openai/gpt-4o-mini
```
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1550).
* #1556
* __->__ #1550
# What does this PR do?
This commit introduces a new logging system that allows loggers to be
assigned
a category while retaining the logger name based on the file name. The
log
format includes both the logger name and the category, producing output
like:
```
INFO 2025-03-03 21:44:11,323 llama_stack.distribution.stack:103 [core]: Tool_groups: builtin::websearch served by
tavily-search
```
Key features include:
- Category-based logging: Loggers can be assigned a category (e.g.,
"core", "server") when programming. The logger can be loaded like
this: `logger = get_logger(name=__name__, category="server")`
- Environment variable control: Log levels can be configured
per-category using the
`LLAMA_STACK_LOGGING` environment variable. For example:
`LLAMA_STACK_LOGGING="server=DEBUG;core=debug"` enables DEBUG level for
the "server"
and "core" categories.
- `LLAMA_STACK_LOGGING="all=debug"` sets DEBUG level globally for all
categories and
third-party libraries.
This provides fine-grained control over logging levels while maintaining
a clean and
informative log format.
The formatter uses the rich library which provides nice colors better
stack traces like so:
```
ERROR 2025-03-03 21:49:37,124 asyncio:1758 [uncategorized]: unhandled exception during asyncio.run() shutdown
task: <Task finished name='Task-16' coro=<handle_signal.<locals>.shutdown() done, defined at
/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:146>
exception=UnboundLocalError("local variable 'loop' referenced before assignment")>
╭────────────────────────────────────── Traceback (most recent call last) ───────────────────────────────────────╮
│ /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:178 in shutdown │
│ │
│ 175 │ │ except asyncio.CancelledError: │
│ 176 │ │ │ pass │
│ 177 │ │ finally: │
│ ❱ 178 │ │ │ loop.stop() │
│ 179 │ │
│ 180 │ loop = asyncio.get_running_loop() │
│ 181 │ loop.create_task(shutdown()) │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
UnboundLocalError: local variable 'loop' referenced before assignment
```
Co-authored-by: Ashwin Bharambe <@ashwinb>
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,918 __main__:365 [server]: Using config file: llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,925 __main__:378 [server]: Run configuration:
INFO 2025-03-03 21:55:35,928 __main__:380 [server]: apis:
- agents
```
[//]: # (## Documentation)
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
The commit addresses the Ruff warning B008 by refactoring the code to
avoid calling SamplingParams() directly in function argument defaults.
Instead, it either uses Field(default_factory=SamplingParams) for
Pydantic models or sets the default to None and instantiates
SamplingParams inside the function body when the argument is None.
Signed-off-by: Sébastien Han <seb@redhat.com>
A self-respecting server needs good observability which starts with
configurable logging. Llama Stack had little until now. This PR adds a
`logcat` facility towards that. Callsites look like:
```python
logcat.debug("inference", f"params to ollama: {params}")
```
- the first parameter is a category. there is a static list of
categories in `llama_stack/logcat.py`
- each category can be associated with a log-level which can be
configured via the `LLAMA_STACK_LOGGING` env var.
- a value `LLAMA_STACK_LOGGING=inference=debug;server=info"` does the
obvious thing. there is a special key called `all` which is an alias for
all categories
## Test Plan
Ran with `LLAMA_STACK_LOGGING="all=debug" llama stack run fireworks` and
saw the following:

Hit it with a client-sdk test case and saw this:

`ChatCompletionResponseEventType: start` is ignored and not yielded in
the agent_instance as we expect that to not have any content.
However, litellm sends first event as `ChatCompletionResponseEventType:
start` with content ( which was the first token that we were skipping )
```
LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/agents/test_agents.py --inference-model "openai/gpt-4o-mini" -k test_agent_simple
```
This was failing before ( since the word hello was not in the final
response )
Groq has never supported raw completions anyhow. So this makes it easier
to switch it to LiteLLM. All our test suite passes.
I also updated all the openai-compat providers so they work with api
keys passed from headers. `provider_data`
## Test Plan
```bash
LLAMA_STACK_CONFIG=groq \
pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--inference-model=groq/llama-3.3-70b-versatile --vision-inference-model=""
```
Also tested (openai, anthropic, gemini) providers. No regressions.
# What does this PR do?
Tool format depends on the model. @ehhuang introduced a
`get_default_tool_prompt_format` function for this purpose. We should
use that instead of hacky model ID matching we had before.
Secondly, non llama models don't have this concept so testing with those
models should work as is.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```bash
for distro in fireworks ollama; do
LLAMA_STACK_CONFIG=$distro \
pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--inference-model=meta-llama/Llama-3.2-3B-Instruct \
--vision-inference-model=""
done
LLAMA_STACK_CONFIG=dev \
pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--inference-model=openai/gpt-4o \
--vision-inference-model=""
```
[//]: # (## Documentation)
# What does this PR do?
This PR introduces more non-llama model support to llama stack.
Providers introduced: openai, anthropic and gemini. All of these
providers use essentially the same piece of code -- the implementation
works via the `litellm` library.
We will expose only specific models for providers we enable making sure
they all work well and pass tests. This setup (instead of automatically
enabling _all_ providers and models allowed by LiteLLM) ensures we can
also perform any needed prompt tuning on a per-model basis as needed
(just like we do it for llama models.)
## Test Plan
```bash
#!/bin/bash
args=("$@")
for model in openai/gpt-4o anthropic/claude-3-5-sonnet-latest gemini/gemini-1.5-flash; do
LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--embedding-model=all-MiniLM-L6-v2 \
--vision-inference-model="" \
--inference-model=$model "${args[@]}"
done
```
# What does this PR do?
- Fixed type hinting and missing imports across multiple modules.
- Improved compatibility by using `TYPE_CHECKING` for conditional
imports.
- Updated `pyproject.toml` to enforce stricter linting.
Signed-off-by: Sébastien Han <seb@redhat.com>
Signed-off-by: Sébastien Han <seb@redhat.com>
Summary:
Currently we don't set the best tool_prompt_format according to model as
promisd.
Test Plan:
Added print around raw model input and inspected manually
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1214).
* #1234
* __->__ #1214
This PR begins the process of supporting non-llama models within Llama
Stack. We start simple by adding support for this functionality within a
few existing providers: fireworks, together and ollama.
## Test Plan
```bash
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--inference-model accounts/fireworks/models/phi-3-vision-128k-instruct
```
^ this passes most of the tests but as expected fails the tool calling
related tests since they are very specific to Llama models
```
inference/test_text_inference.py::test_text_completion_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_completion_log_probs_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_completion_log_probs_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_text_completion_structured_output[accounts/fireworks/models/phi-3-vision-128k-instruct-completion-01] PASSED
inference/test_text_inference.py::test_text_chat_completion_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-Which planet do humans live on?-Earth] PASSED
inference/test_text_inference.py::test_text_chat_completion_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-Which planet has rings around it with a name starting w
ith letter S?-Saturn] PASSED
inference/test_text_inference.py::test_text_chat_completion_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-What's the name of the Sun in latin?-Sol] PASSED
inference/test_text_inference.py::test_text_chat_completion_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-What is the name of the US captial?-Washington] PASSED
inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] FAILED
inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] FAILED
inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_required[accounts/fireworks/models/phi-3-vision-128k-instruct] FAILED
inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_none[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_text_chat_completion_structured_output[accounts/fireworks/models/phi-3-vision-128k-instruct] ERROR
inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[accounts/fireworks/models/phi-3-vision-128k-instruct-True] PASSED
inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[accounts/fireworks/models/phi-3-vision-128k-instruct-False] PASSED
```
See Issue #922
The change is slightly backwards incompatible but no callsite (in our
client codebases or stack-apps) every passes a depth-2
`List[List[InterleavedContentItem]]` (which is now disallowed.)
## Test Plan
```bash
$ cd llama_stack/providers/tests/inference
$ pytest -s -v -k fireworks test_embeddings.py \
--inference-model nomic-ai/nomic-embed-text-v1.5 --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k together test_embeddings.py \
--inference-model togethercomputer/m2-bert-80M-8k-retrieval --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k ollama test_embeddings.py \
--inference-model all-minilm:latest --env EMBEDDING_DIMENSION=784
```
Also ran `tests/client-sdk/inference/test_embeddings.py`
Summary:
Need this to format the completion message with tool_calls correctly.
See added unittest.
Test Plan:
python -m unittest
llama_stack.providers.tests.inference.test_prompt_adapter
# What does this PR do?
We have support for embeddings in our Inference providers, but so far we
haven't done the final step of actually registering the known embedding
models and making sure they are extremely easy to use. This is one step
towards that.
## Test Plan
Run existing inference tests.
```bash
$ cd llama_stack/providers/tests/inference
$ pytest -s -v -k fireworks test_embeddings.py \
--inference-model nomic-ai/nomic-embed-text-v1.5 --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k together test_embeddings.py \
--inference-model togethercomputer/m2-bert-80M-8k-retrieval --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k ollama test_embeddings.py \
--inference-model all-minilm:latest --env EMBEDDING_DIMENSION=784
```
The value of the EMBEDDING_DIMENSION isn't actually used in these tests,
it is merely used by the test fixtures to check if the model is an LLM
or Embedding.
There should be a choke-point for llama3.api imports -- this is the
prompt adapter. Creating a ChatFormat() object on demand is inexpensive.
The underlying Tokenizer is a singleton anyway.
# What does this PR do?
This fixes an issue when running the e2e agent example:
https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/e2e_loop_with_client_tools.py
```
| File "/home/yutang/repos/llama-stack/llama_stack/providers/remote/inference/vllm/vllm.py", line 175, in _process_vllm_chat_completion_stream_response
| tool_call = convert_tool_call(choice.delta.tool_calls[0])
| File "/home/yutang/repos/llama-stack/llama_stack/providers/utils/inference/openai_compat.py", line 441, in convert_tool_call
| return ToolCall(
| File "/home/yutang/.conda/envs/distribution-myenv/lib/python3.10/site-packages/pydantic/main.py", line 214, in __init__
| validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self)
| pydantic_core._pydantic_core.ValidationError: 4 validation errors for ToolCall
| call_id
| Input should be a valid string [type=string_type, input_value=None, input_type=NoneType]
| For further information visit https://errors.pydantic.dev/2.10/v/string_type
| tool_name.enum[BuiltinTool]
| Input should be 'brave_search', 'wolfram_alpha', 'photogen' or 'code_interpreter' [type=enum, input_value=None, input_type=NoneType]
| For further information visit https://errors.pydantic.dev/2.10/v/enum
| tool_name.str
| Input should be a valid string [type=string_type, input_value=None, input_type=NoneType]
| For further information visit https://errors.pydantic.dev/2.10/v/string_type
| arguments
| Input should be a valid dictionary [type=dict_type, input_value=202, input_type=int]
| For further information visit https://errors.pydantic.dev/2.10/v/dict_type
```
This issue happened because not all arguments have been appended to the
tool call buffer yet. The current code assumes that we are ready to
convert the tool call whenever args can be converted to JSON
successfully. In this case, `json.loads("202")` would succeed but the
rest of the arguments have not been properly parsed yet.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
The e2e example worked successfully (although note that I ran the script
twice with each function call separately due to
https://github.com/meta-llama/llama-stack/issues/1120):
```
tool_execution> Tool:get_ticker_data Args:{'ticker_symbol': 'GOOG', 'start': '2023-01-01', 'end': '2023-12-31'}
tool_execution> Tool:get_ticker_data Response:"[{\"('Year', '')\":2023,\"('Close', 'GOOG')\":140.4254455566}]"
tool_execution> Tool:web_search Args:{'query': '42nd president of the United States'}
tool_execution> Tool:web_search Response:"{\"query\": \"42nd president of the United States\", \"top_k\": [{\"title\": \"William J. Clinton | whitehouse.gov\", \"url\": \"https://obamawhitehouse.archives.gov/1600/presidents/williamjclinton\", \"description\": \"<strong>Bill Clinton</strong> is an American politician from Arkansas who served as the 42nd President of the United States (1993-2001). He took office at the end of the Cold War, and was the first baby-boomer generation President.\", \"type\": \"search_result\"}, {\"title\": \"Bill Clinton - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Bill_Clinton\", \"description\": \"<strong>William Jefferson Clinton</strong> (n\\u00e9 Blythe; born August 19, 1946) is an American politician and lawyer who served as the 42nd president of the United States from 1993 to 2001. A member of the Democratic Party, he previously served as the attorney general of Arkansas from 1977 to 1979 and as the ...\", \"type\": \"search_result\"}, [{\"type\": \"video_result\", \"url\": \"https://www.youtube.com/watch?v=eR2z_1-v87Y\", \"title\": \"A Conversation with Bill Clinton, 42nd President of the United ...\", \"description\": \"William Jefferson Clinton, the first Democratic president in six decades to be elected twice, led the United States to the longest economic expansion in Amer...\"}, {\"type\": \"video_result\", \"url\": \"4484174096/\", \"title\": \"January 20, 1993, President Clinton was sworn in as the 42nd ...\", \"description\": \"WATCH: On January 20, 1993, President Bill Clinton was sworn in as the 42nd President of the United States. #InaugurationDay Video courtesy of the...\"}, {\"type\": \"video_result\", \"url\": \"https://www.youtube.com/watch?v=vI0HGQqEJh0\", \"title\": \"42nd President of the United States, Bill Clinton, shared thoughts ...\", \"description\": \"AboutPressCopyrightContact usCreatorsAdvertiseDevelopersTermsPrivacyPolicy & SafetyHow YouTube worksTest new features \\u00b7 \\u00a9 2024 Google LLC\"}, {\"type\": \"video_result\", \"url\": \"https://www.youtube.com/shorts/vI0HGQqEJh0\", \"title\": \"42nd President of the United States, Bill Clinton, shared ...\", \"description\": \"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.\"}, {\"type\": \"video_result\", \"url\": \"https://www.youtube.com/watch?v=PHihhihVth0\", \"title\": \"Bill & Hillary Clinton returning to Little Rock for 20th ...\", \"description\": \"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.\"}]]}"
```
All text inference tests passed.
[//]: # (## Documentation)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.
This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279
## Test Plan
Ensure all `llama` CLI `model` sub-commands work:
```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```
Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```
Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs
Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.
```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
# What does this PR do?
- Remove hardcoded configurations from pre-commit.
- Allow configuration to be set via pyproject.toml.
- Merge .ruff.toml settings into pyproject.toml.
- Ensure the linter and formatter use the defined configuration instead
of being overridden by pre-commit.
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
Closes https://github.com/meta-llama/llama-stack/issues/1046.
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
```
LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/inference/test_text_inference.py
================================================================= test session starts =================================================================
platform linux -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /home/yutang/.conda/envs/distribution-myenv/bin/python3.10
cachedir: .pytest_cache
rootdir: /home/yutang/repos/llama-stack
configfile: pyproject.toml
plugins: anyio-4.8.0
collected 14 items
tests/client-sdk/inference/test_text_inference.py::test_text_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 7%]
tests/client-sdk/inference/test_text_inference.py::test_text_completion_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 14%]
tests/client-sdk/inference/test_text_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote:...) [ 21%]
tests/client-sdk/inference/test_text_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::vll...) [ 28%]
tests/client-sdk/inference/test_text_inference.py::test_text_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 35%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-Which planet do humans live on?-Earth] PASSED [ 42%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-Which planet has rings around it with a name starting with letter S?-Saturn] PASSED [ 50%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What's the name of the Sun in latin?-Sol] PASSED [ 57%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What is the name of the US captial?-Washington] PASSED [ 64%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 71%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 78%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 85%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[meta-llama/Llama-3.1-8B-Instruct-True] PASSED [ 92%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[meta-llama/Llama-3.1-8B-Instruct-False] PASSED [100%]
=============================================== 12 passed, 2 xfailed, 1 warning in 366.56s (0:06:06) ================================================
```
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
This PR adds support for tool calling for non-streaming chat completion.
Prior to this, tool calls were not passed to chat completion requests
and the tools object needs to be restructured properly to be compatible
with vLLM provider.
## Test Plan
```
LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/inference/test_text_inference.py
================================================================= test session starts =================================================================
platform linux -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /home/yutang/.conda/envs/distribution-myenv/bin/python3.10
cachedir: .pytest_cache
rootdir: /home/yutang/repos/llama-stack
configfile: pyproject.toml
plugins: anyio-4.8.0
collected 12 items
tests/client-sdk/inference/test_text_inference.py::test_text_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 8%]
tests/client-sdk/inference/test_text_inference.py::test_text_completion_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 16%]
tests/client-sdk/inference/test_text_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote:...) [ 25%]
tests/client-sdk/inference/test_text_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::vll...) [ 33%]
tests/client-sdk/inference/test_text_inference.py::test_text_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 41%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-Which planet do humans live on?-Earth] PASSED [ 50%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-Which planet has rings around it with a name starting with letter S?-Saturn] PASSED [ 58%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What's the name of the Sun in latin?-Sol] PASSED [ 66%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What is the name of the US captial?-Washington] PASSED [ 75%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED [ 83%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[meta-llama/Llama-3.1-8B-Instruct] FAILED [ 91%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED [100%]
```
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
The current default system prompt for llama3.2 tends to overindex on
tool calling and doesn't work well when the prompt does not require tool
calling.
This PR adds an option to override the default system prompt, and
organizes tool-related configs into a new config object.
- [ ] Addresses issue (#issue)
## Test Plan
python -m unittest
llama_stack.providers.tests.inference.test_prompt_adapter
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/937).
* #938
* __->__ #937
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
add support to the NVIDIA Inference provider for image inputs
## Test Plan
1. Run local [Llama 3.2 11b vision
instruct](https://build.nvidia.com/meta/llama-3.2-11b-vision-instruct?snippet_tab=Docker)
NIM
2. Start a stack, e.g. `llama stack run
llama_stack/templates/nvidia/run.yaml --env
NVIDIA_BASE_URL=http://localhost:8000`
3. Run image tests, e.g. `LLAMA_STACK_BASE_URL=http://localhost:8321
pytest -v tests/client-sdk/inference/test_inference.py
--vision-inference-model meta-llama/Llama-3.2-11B-Vision-Instruct -k
image`
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
# What does this PR do?
- Discussion in
https://github.com/meta-llama/llama-stack/pull/906#discussion_r1936260819
- image.data should accept base64 string as input instead of binary
bytes, change prompt_adapter to account for that.
## Test Plan
```
pytest -v tests/client-sdk/inference/test_inference.py
```
with test in https://github.com/meta-llama/llama-stack/pull/906
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
1) As per @mattf's suggestion, we want to mark the pytest as xfail for
providers that do not support the functionality. In this diff, we xfail
the logProbs inference tests for providers who does not support log
probs.
( log probs is only supported by together, fireworks and vllm)
2) Added logProbs support for together according to their developer
[doc](https://docs.together.ai/docs/logprobs).
## Test Plan
1) Together & Fireworks
```
export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/together/run.yaml
/opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py
```
```
tests/client-sdk/inference/test_inference.py::test_text_completion_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of planets in our solar system?-Earth] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of the planets that have rings around them?-Saturn] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What's the name of the Sun in latin?-Sol] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What is the name of the US captial?-Washington] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_non_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_base64_url[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED
========================================================================================== 15 passed, 2 warnings in 19.46s ===========================================================================================
```
```
export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/fireworks/run.yaml
/opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py
```
All tests passed
2) Ollama - LogProbs tests are marked as xfailed.
```
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet)
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet)
```
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Some small updates to the inference types to make them more standard
Specifically:
- image data is now located in a "image" subkey
- similarly tool call data is located in a "tool_call" subkey
The pattern followed is `dict(type="foo", foo=<...>)`
# What does this PR do?
- previous fix introduced regression for non base64 image
- add back download, and base64 check
## Test Plan
<img width="835" alt="image"
src="https://github.com/user-attachments/assets/b70bf725-035a-4b42-b492-53daaf71458a"
/>
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
Fixes error when running an provider using openai_compat.py
```python
Traceback (most recent call last):
File "/home/ubuntu/miniconda3/envs/llamastack-vllm/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/ubuntu/miniconda3/envs/llamastack-vllm/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/distribution/server/server.py", line 426, in <module>
main()
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/distribution/server/server.py", line 349, in main
impls = asyncio.run(construct_stack(config))
File "/home/ubuntu/miniconda3/envs/llamastack-vllm/lib/python3.10/asyncio/runners.py", line 44, in run
return loop.run_until_complete(main)
File "/home/ubuntu/miniconda3/envs/llamastack-vllm/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
return future.result()
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/distribution/stack.py", line 207, in construct_stack
impls = await resolve_impls(
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/distribution/resolver.py", line 239, in resolve_impls
impl = await instantiate_provider(
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/distribution/resolver.py", line 330, in instantiate_provider
impl = await fn(*args)
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/providers/remote/inference/vllm/__init__.py", line 11, in get_adapter_impl
from .vllm import VLLMInferenceAdapter
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/providers/remote/inference/vllm/vllm.py", line 39, in <module>
from llama_stack.providers.utils.inference.openai_compat import (
File "/home/ubuntu/us-south-2/llama-stack/llama_stack/providers/utils/inference/openai_compat.py", line 11, in <module>
from llama_models.llama3.api.datatypes import (
ImportError: cannot import name 'GreedySamplingStrategy' from 'llama_models.llama3.api.datatypes' (/home/ubuntu/miniconda3/envs/llamastack-vllm/lib/python3.10/site-packages/llama_models/llama3/api/datatypes.py)
++ error_handler 61
++ echo 'Error occurred in script at line: 61'
Error occurred in script at line: 61
++ exit 1
```
## Test Plan
```bash
conda create --name llamastack-vllm python=3.10
conda activate llamastack-vllm
# To sync with the current llama-models repo
pip install -e git+https://github.com/meta-llama/llama-models.git#egg=llama-models
export INFERENCE_MODEL=unsloth/Llama-3.3-70B-Instruct-bnb-4bit && \
pip install -e . && \
llama stack build --template remote-vllm --image-type conda && \
llama stack run ./distributions/remote-vllm/run.yaml \
--port 5000 \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://localhost:8000
```
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.