Commit graph

60 commits

Author SHA1 Message Date
Ashwin Bharambe
0dc7f5fa89
Add version to REST API url (#478)
# What does this PR do? 

Adds a `/alpha/` prefix to all the REST API urls.

Also makes them all use hyphens instead of underscores as is more
standard practice.

(This is based on feedback from our partners.)

## Test Plan 

The Stack itself does not need updating. However, client SDKs and
documentation will need to be updated.
2024-11-18 22:44:14 -08:00
Matthew Farrellee
fcc2132e6f
remove pydantic namespace warnings using model_config (#470)
# What does this PR do?

remove another model_ pydantic namespace warning and convert old-style
'class Config' to new-style 'model_config' workaround.

also a whitespace change to get past -


flake8...................................................................Failed
llama_stack/cli/download.py:296:85: E226 missing whitespace around
arithmetic operator
llama_stack/cli/download.py:297:54: E226 missing whitespace around
arithmetic operator


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-11-18 19:24:14 -08:00
Ashwin Bharambe
20bf2f50c2 No more model_id warnings 2024-11-15 12:20:18 -08:00
Dinesh Yeduguru
0850ad656a
unregister for memory banks and remove update API (#458)
The semantics of an Update on resources is very tricky to reason about
especially for memory banks and models. The best way to go forward here
is for the user to unregister and register a new resource. We don't have
a compelling reason to support update APIs.


Tests:
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000

pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0

$CONDA_PREFIX/bin/pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_model_registration.py

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-14 17:12:11 -08:00
Dinesh Yeduguru
efe791bab7
Support model resource updates and deletes (#452)
# What does this PR do?
* Changes the registry to store only one RoutableObject per identifier.
Before it was a list, which is not really required.
* Adds impl for updates and deletes
* Updates routing table to handle updates correctly



## Test Plan
```
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
❯ llama-stack-client models register dineshyv-model --provider-model-id=fireworks/llama-v3p1-70b-instruct
Successfully registered model dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| dineshyv-model         | fireworks-0   | fireworks/llama-v3p1-70b-instruct  | {}         |
+------------------------+---------------+------------------------------------+------------+
❯ llama-stack-client models update dineshyv-model --provider-model-id=fireworks/llama-v3p1-405b-instruct
Successfully updated model dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| dineshyv-model         | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
llama-stack-client models delete dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+

```

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-13 21:55:41 -08:00
Xi Yan
94a6f57812
change schema -> dataset_schema for register_dataset api (#443)
# What does this PR do?

- API updates: change schema to dataset_schema for register_dataset for
resolving pydantic naming conflict
- Note: this OpenAPI update will be synced with
llama-stack-client-python SDK.

cc @dineshyv 

## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 11:17:46 -05:00
Xi Yan
d5b1202c83
change schema -> dataset_schema (#442)
# What does this PR do?

- `schema` should not a field w/ pydantic warnings
- change `schema` to `dataset_schema`

<img width="855" alt="image"
src="https://github.com/user-attachments/assets/47cb6bb9-4be0-46a5-8701-24d24e2eaabd">


## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 10:58:12 -05:00
Dinesh Yeduguru
fdff24e77a
Inference to use provider resource id to register and validate (#428)
This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.



Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock
2024-11-12 20:02:00 -08:00
Ashwin Bharambe
983d6ce2df
Remove the "ShieldType" concept (#430)
# What does this PR do?

This PR kills the notion of "ShieldType". The impetus for this is the
realization:

> Why is keyword llama-guard appearing so many times everywhere,
sometimes with hyphens, sometimes with underscores?

Now that we have a notion of "provider specific resource identifiers"
and "user specific aliases" for those and the fact that this works with
models ("Llama3.1-8B-Instruct" <> "fireworks/llama-3pv1-..."), we can
follow the same rules for Shields.

So each Safety provider can make up a notion of identifiers it has
registered. This already happens with Bedrock correctly. We just
generalize it for Llama Guard, Prompt Guard, etc.

For Llama Guard, we further simplify by just adopting the underlying
model name itself as the identifier! No confusion necessary.

While doing this, I noticed a bug in our DistributionRegistry where we
weren't scoping identifiers by type. Fixed.

## Feature/Issue validation/testing/test plan

Ran (inference, safety, memory, agents) tests with ollama and fireworks
providers.
2024-11-12 12:37:24 -08:00
Ashwin Bharambe
09269e2a44
Enable sane naming of registered objects with defaults (#429)
# What does this PR do? 

This is a follow-up to #425. That PR allows for specifying models in the
registry, but each entry needs to look like:

```yaml
- identifier: ...
  provider_id: ...
  provider_resource_identifier: ...
```

This is headache-inducing.

The current PR makes this situation better by adopting the shape of our
APIs. Namely, we need the user to only specify `model-id`. The rest
should be optional and figured out by the Stack. You can always override
it.

Here's what example `ollama` "full stack" registry looks like (we still
need to kill or simplify shield_type crap):
```yaml
models:
- model_id: Llama3.2-3B-Instruct
- model_id: Llama-Guard-3-1B
shields:
- shield_id: llama_guard
  shield_type: llama_guard
```

## Test Plan

See test plan for #425. Re-ran it.
2024-11-12 11:18:05 -08:00
Ashwin Bharambe
d9d271a684
Allow specifying resources in StackRunConfig (#425)
# What does this PR do? 

This PR brings back the facility to not force registration of resources
onto the user. This is not just annoying but actually not feasible
sometimes. For example, you may have a Stack which boots up with private
providers for inference for models A and B. There is no way for the user
to actually know which model is being served by these providers now (to
be able to register it.)

How will this avoid the users needing to do registration? In a follow-up
diff, I will make sure I update the sample run.yaml files so they list
the models served by the distributions explicitly. So when users do
`llama stack build --template <...>` and run it, their distributions
come up with the right set of models they expect.

For self-hosted distributions, it also allows us to have a place to
explicit list the models that need to be served to make the "complete"
stack (including safety, e.g.)

## Test Plan

Started ollama locally with two lightweight models: Llama3.2-3B-Instruct
and Llama-Guard-3-1B.

Updated all the tests including agents. Here's the tests I ran so far:

```bash
pytest -s -v -m "fireworks and llama_3b" test_text_inference.py::TestInference \
  --env FIREWORKS_API_KEY=...

pytest -s -v -m "ollama and llama_3b" test_text_inference.py::TestInference 

pytest -s -v -m ollama test_safety.py

pytest -s -v -m faiss test_memory.py

pytest -s -v -m ollama  test_agents.py \
  --inference-model=Llama3.2-3B-Instruct --safety-model=Llama-Guard-3-1B
```

Found a few bugs here and there pre-existing that these test runs fixed.
2024-11-12 10:58:49 -08:00
Dinesh Yeduguru
0a3b3d5fb6
migrate scoring fns to resource (#422)
* fix after rebase

* remove print

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:28:48 -08:00
Dinesh Yeduguru
3802edfc50
migrate evals to resource (#421)
* migrate evals to resource

* remove listing of providers's evals

* change the order of params in register

* fix after rebase

* linter fix

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:24:03 -08:00
Dinesh Yeduguru
b95cb5308f
migrate dataset to resource (#420)
* migrate dataset to resource

* remove auto discovery

* remove listing of providers's datasets

* fix after rebase

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:14:41 -08:00
Dinesh Yeduguru
38cce97597
migrate memory banks to Resource and new registration (#411)
* migrate memory banks to Resource and new registration

* address feedback

* address feedback

* fix tests

* pgvector fix

* pgvector fix v2

* remove auto discovery

* change register signature to make params required

* update client

* client fix

* use annotated union to parse

* remove base MemoryBank inheritence

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:10:44 -08:00
Xi Yan
2b7d70ba86
[Evals API][11/n] huggingface dataset provider + mmlu scoring fn (#392)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* huggingface provider

* datasetdef files

* mmlu scoring fn

* test wip

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* huggingface provider

* wip huggingface register

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* fix

* mmlu loose

* refactor

* msg

* fix tests

* move benchmark task def to file

* msg

* gen openapi

* openapi gen

* move dataset to hf llamastack repo

* remove todo

* refactor

* add register model to unit test

* rename

* register to client

* delete preregistered dataset/eval task

* comments

* huggingface -> remote adapter

* openapi gen
2024-11-11 14:49:50 -05:00
Dinesh Yeduguru
ec644d3418
migrate model to Resource and new registration signature (#410)
* resource oriented object design for models

* add back llama_model field

* working tests

* register singature fix

* address feedback

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-08 16:12:57 -08:00
Dinesh Yeduguru
d800a16acd
Resource oriented design for shields (#399)
* init

* working bedrock tests

* bedrock test for inference fixes

* use env vars for bedrock guardrail vars

* add register in meta reference

* use correct shield impl in meta ref

* dont add together fixture

* right naming

* minor updates

* improved registration flow

* address feedback

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-08 12:16:11 -08:00
Xi Yan
6192bf43a4
[Evals API][10/n] API updates for EvalTaskDef + new test migration (#379)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* delete old tests

* fixture return impl
2024-11-07 21:24:12 -08:00
Dinesh Yeduguru
093c9f1987
add bedrock distribution code (#358)
* add bedrock distribution code

* fix linter error

* add bedrock shields support

* linter fixes

* working bedrock safety

* change to return only one violation

* remove env var reading

* refereshable boto credentials

* remove env vars

* address raghu's feedback

* fix session_ttl passing

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-06 14:39:11 -08:00
Ashwin Bharambe
fb2678b134 Fix shield_type and routing table breakage 2024-11-04 19:57:15 -08:00
Dinesh Yeduguru
663883cc29
persist registered objects with distribution (#354)
* persist registered objects with distribution

* linter fixes

* comment

* use annotate and field discriminator

* workign tests

* donot use global state

* precommit failures fixed

* add back Any

* fix imports

* remove unnecessary changes in ollama

* precommit failures fixed

* make kvstore configurable for dist and rename registry

* add comment about registry list return

* fix linter errors

* use registry to hydrate

* remove debug print

* linter fixes

* remove kvstore.db

* rename distribution_registry_store

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-04 17:25:06 -08:00
Ashwin Bharambe
37b330b4ef
add dynamic clients for all APIs (#348)
* add dynamic clients for all APIs

* fix openapi generator

* inference + memory + agents tests now pass with "remote" providers

* Add docstring which fixes openapi generator :/
2024-10-31 14:46:25 -07:00
Ashwin Bharambe
26d1668f7d Revert "remove Field for return_type"
This reverts commit ffb3965ade.
2024-10-28 21:39:48 -07:00
Ashwin Bharambe
eccd7dc4a9 Avoid warnings from pydantic for overriding schema
Also fix structured output in completions
2024-10-28 21:39:48 -07:00
Xi Yan
7b8748c53e
[Evals API][6/n] meta-reference llm as judge, registration for ScoringFnDefs (#330)
* wip scoring refactor

* llm as judge, move folders

* test full generation + eval

* extract score regex to llm context

* remove prints, cleanup braintrust in this branch

* change json -> class

* remove initialize

* address nits

* check identifier prefix

* udpate MANIFEST
2024-10-28 14:08:42 -07:00
Xi Yan
ffb3965ade remove Field for return_type 2024-10-28 13:04:41 -07:00
Xi Yan
abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00
Xi Yan
cb84034567
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
2024-10-24 14:52:30 -07:00
Ashwin Bharambe
161aef0aae Small updates to quantization config 2024-10-24 12:08:56 -07:00
Ashwin Bharambe
7afe51c84d
New quantized models (#301) 2024-10-24 08:38:56 -07:00
Xi Yan
821810657f
[Evals API][2/n] datasets / datasetio meta-reference implementation (#288)
* skeleton dataset / datasetio

* dataset datasetio

* config

* address comments

* delete dataset_utils

* address comments

* naming fix
2024-10-22 16:12:16 -07:00
Sarthak Deshpande
8a01b9e40c
Added implementations for get_agents_session, delete_agents_session and delete_agents (#267) 2024-10-22 13:50:43 -07:00
Ashwin Bharambe
c06718fbd5
Add support for Structured Output / Guided decoding (#281)
Added support for structured output in the API and added a reference implementation for meta-reference.

A few notes:

* Two formats are specified in the API: Json schema and EBNF based grammar
* Implementation only supports Json for now
We use lm-format-enhancer to provide the implementation right now but may change this especially because BNF grammars aren't supported by that library.
Fireworks has support for structured output and Together has limited supported for it too. Subsequent PRs will add these changes. We would like all our inference providers to provide structured output for llama models since it is an extremely important and highly sought-after need by the developers.
2024-10-22 12:53:34 -07:00
Xi Yan
e45f121c77
[Evals API] [1/n] Initial API (#287)
* type system api

* datasets api

* fix

* datasetio api

* kill reward scoring

* scoring functions + evals

* move jobs, fix errors
2024-10-22 09:31:19 -07:00
nehal-a2z
c995219731
Update event_logger.py (#275)
spelling error
2024-10-21 10:46:53 -07:00
Ashwin Bharambe
2089427d60
Make all methods async def again; add completion() for meta-reference (#270)
PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def".

The rationale was that this allowed the user (within llama-stack) of this to use it as:

```
async for chunk in api.chat_completion(params)
```

However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like:

```
async for chunk in await api.chat_completion(params)
```

Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)
2024-10-18 20:50:59 -07:00
Xi Yan
be3c5c034d
[bugfix] fix case for agent when memory bank registered without specifying provider_id (#264)
* fix case where memory bank is registered without provider_id

* memory test

* agents unit test
2024-10-17 17:28:17 -07:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Xi Yan
4d5f7459aa
[bugfix] Fix logprobs on meta-reference impl (#213)
* fix log probs

* add back LogProbsConfig

* error handling

* bugfix
2024-10-07 19:42:39 -07:00
Russell Bryant
06db9213b1
inference: Add model option to client (#170)
I was running this client for testing purposes and being able to
specify which model to use is a convenient addition. This change makes
that possible.
2024-10-03 11:18:57 -07:00
Ashwin Bharambe
210b71b0ba
fix prompt guard (#177)
Several other fixes to configure. Add support for 1b/3b models in ollama.
2024-10-03 11:07:53 -07:00
Ashwin Bharambe
8d049000e3 Add an introspection "Api.inspect" API 2024-10-02 15:41:14 -07:00
Ashwin Bharambe
fe4aabd690 provider_id => provider_type, adapter_id => adapter_type 2024-10-02 14:05:59 -07:00
Ashwin Bharambe
4a75d922a9 Make Llama Guard 1B the default 2024-10-02 09:48:26 -07:00
Xi Yan
4ae8c63a2b pre-commit lint 2024-09-28 16:04:41 -07:00
Ashwin Bharambe
0a3999a9a4
Use inference APIs for executing Llama Guard (#121)
We should use Inference APIs to execute Llama Guard instead of directly needing to use HuggingFace modeling related code. The actual inference consideration is handled by Inference.
2024-09-28 15:40:06 -07:00
Ashwin Bharambe
56aed59eb4
Support for Llama3.2 models and Swift SDK (#98) 2024-09-25 10:29:58 -07:00
Ashwin Bharambe
ed8d10775a Remove key 2024-09-25 05:53:49 -07:00
Yogish Baliga
b85d675c6f Adding safety adapter for Together 2024-09-24 18:35:48 -07:00