forked from phoenix-oss/llama-stack-mirror
174 lines
5 KiB
Markdown
174 lines
5 KiB
Markdown
---
|
|
orphan: true
|
|
---
|
|
|
|
# Dell Distribution of Llama Stack
|
|
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
|
|
|
{{ providers_table }}
|
|
|
|
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
|
|
|
|
{% if run_config_env_vars %}
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
|
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
|
{% endfor %}
|
|
{% endif %}
|
|
|
|
|
|
## Setting up Inference server using Dell Enterprise Hub's custom TGI container.
|
|
|
|
NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified.
|
|
|
|
```bash
|
|
export INFERENCE_PORT=8181
|
|
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
|
|
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
|
export CHROMADB_HOST=localhost
|
|
export CHROMADB_PORT=6601
|
|
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
|
|
export CUDA_VISIBLE_DEVICES=0
|
|
export LLAMA_STACK_PORT=8321
|
|
|
|
docker run --rm -it \
|
|
--network host \
|
|
-v $HOME/.cache/huggingface:/data \
|
|
-e HF_TOKEN=$HF_TOKEN \
|
|
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
|
--gpus $CUDA_VISIBLE_DEVICES \
|
|
ghcr.io/huggingface/text-generation-inference \
|
|
--dtype bfloat16 \
|
|
--usage-stats off \
|
|
--sharded false \
|
|
--cuda-memory-fraction 0.7 \
|
|
--model-id $INFERENCE_MODEL \
|
|
--port $INFERENCE_PORT --hostname 0.0.0.0
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
|
|
|
```bash
|
|
export SAFETY_INFERENCE_PORT=8282
|
|
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
|
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
|
export CUDA_VISIBLE_DEVICES=1
|
|
|
|
docker run --rm -it \
|
|
--network host \
|
|
-v $HOME/.cache/huggingface:/data \
|
|
-e HF_TOKEN=$HF_TOKEN \
|
|
-p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \
|
|
--gpus $CUDA_VISIBLE_DEVICES \
|
|
ghcr.io/huggingface/text-generation-inference \
|
|
--dtype bfloat16 \
|
|
--usage-stats off \
|
|
--sharded false \
|
|
--cuda-memory-fraction 0.7 \
|
|
--model-id $SAFETY_MODEL \
|
|
--hostname 0.0.0.0 \
|
|
--port $SAFETY_INFERENCE_PORT
|
|
```
|
|
|
|
## Dell distribution relies on ChromaDB for vector database usage
|
|
|
|
You can start a chroma-db easily using docker.
|
|
```bash
|
|
# This is where the indices are persisted
|
|
mkdir -p $HOME/chromadb
|
|
|
|
podman run --rm -it \
|
|
--network host \
|
|
--name chromadb \
|
|
-v $HOME/chromadb:/chroma/chroma \
|
|
-e IS_PERSISTENT=TRUE \
|
|
chromadb/chroma:latest \
|
|
--port $CHROMADB_PORT \
|
|
--host $CHROMADB_HOST
|
|
```
|
|
|
|
## Running Llama Stack
|
|
|
|
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
docker run -it \
|
|
--network host \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v $HOME/.llama:/root/.llama \
|
|
# NOTE: mount the llama-stack directory if testing local changes else not needed
|
|
-v /home/hjshah/git/llama-stack:/app/llama-stack-source \
|
|
# localhost/distribution-dell:dev if building / testing locally
|
|
llamastack/distribution-{{ name }}\
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
# You need a local checkout of llama-stack to run this, get it using
|
|
# git clone https://github.com/meta-llama/llama-stack.git
|
|
cd /path/to/llama-stack
|
|
|
|
export SAFETY_INFERENCE_PORT=8282
|
|
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
|
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
|
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v $HOME/.llama:/root/.llama \
|
|
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-{{ name }} \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
|
|
|
```bash
|
|
llama stack build --template {{ name }} --image-type conda
|
|
llama stack run {{ name }}
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
llama stack run ./run-with-safety.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
```
|