llama-stack/docs/source/distributions/self_hosted_distro/sambanova.md
Jorge Piedrahita Ortiz b2b00a216b
feat(providers): sambanova updated to use LiteLLM openai-compat (#1596)
# What does this PR do?

switch sambanova inference adaptor to LiteLLM usage to simplify
integration and solve issues with current adaptor when streaming and
tool calling, models and templates updated

## Test Plan
pytest -s -v tests/integration/inference/test_text_inference.py
--stack-config=sambanova
--text-model=sambanova/Meta-Llama-3.3-70B-Instruct

pytest -s -v tests/integration/inference/test_vision_inference.py
--stack-config=sambanova
--vision-model=sambanova/Llama-3.2-11B-Vision-Instruct
2025-05-06 16:50:22 -07:00

2.6 KiB

orphan
true

SambaNova Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-sambanova distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
inference remote::sambanova, inline::sentence-transformers
safety inline::llama-guard
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::rag-runtime, remote::model-context-protocol, remote::wolfram-alpha
vector_io inline::faiss, remote::chromadb, remote::pgvector

Environment Variables

The following environment variables can be configured:

  • LLAMASTACK_PORT: Port for the Llama Stack distribution server (default: 8321)
  • SAMBANOVA_API_KEY: SambaNova API Key (default: ``)

Models

The following models are available by default:

  • sambanova/Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)
  • sambanova/Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)
  • sambanova/Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)
  • sambanova/Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)
  • sambanova/Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)
  • sambanova/Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)
  • sambanova/Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)
  • sambanova/Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)
  • sambanova/Llama-4-Maverick-17B-128E-Instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)
  • sambanova/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)

Prerequisite: API Keys

Make sure you have access to a SambaNova API Key. You can get one by visiting SambaNova.ai.

Running Llama Stack with SambaNova

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=8321
docker run \
  -it \
  --pull always \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-sambanova \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY

Via Conda

llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY