llama-stack/docs/source/distributions/self_hosted_distro/sambanova.md
Jorge Piedrahita Ortiz b2b00a216b
feat(providers): sambanova updated to use LiteLLM openai-compat (#1596)
# What does this PR do?

switch sambanova inference adaptor to LiteLLM usage to simplify
integration and solve issues with current adaptor when streaming and
tool calling, models and templates updated

## Test Plan
pytest -s -v tests/integration/inference/test_text_inference.py
--stack-config=sambanova
--text-model=sambanova/Meta-Llama-3.3-70B-Instruct

pytest -s -v tests/integration/inference/test_vision_inference.py
--stack-config=sambanova
--vision-model=sambanova/Llama-3.2-11B-Vision-Instruct
2025-05-06 16:50:22 -07:00

80 lines
2.6 KiB
Markdown

---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# SambaNova Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-sambanova` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| inference | `remote::sambanova`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `SAMBANOVA_API_KEY`: SambaNova API Key (default: ``)
### Models
The following models are available by default:
- `sambanova/Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `sambanova/Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `sambanova/Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
- `sambanova/Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `sambanova/Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `sambanova/Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `sambanova/Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `sambanova/Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
- `sambanova/Llama-4-Maverick-17B-128E-Instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
- `sambanova/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
### Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](https://sambanova.ai/).
## Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-sambanova \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Conda
```bash
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```