forked from phoenix-oss/llama-stack-mirror
- Added new template `dell` and its documentation - Update docs - [minor] uv fix i came across - codegen for all templates Tested with ```bash export INFERENCE_PORT=8181 export DEH_URL=http://0.0.0.0:$INFERENCE_PORT export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct export CHROMADB_HOST=localhost export CHROMADB_PORT=6601 export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank) export CUDA_VISIBLE_DEVICES=0 export LLAMA_STACK_PORT=8321 # build the stack template llama stack build --template=dell # start the TGI inference server podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0 # start chroma-db for vector-io ( aka RAG ) podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname) # build docker llama stack build --template=dell --image-type=container # run llama stack server ( via docker ) podman run -it \ --network host \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ # NOTE: mount the llama-stack / llama-model directories if testing local changes -v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL # test the server cd <PATH_TO_LLAMA_STACK_REPO> LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py ``` --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
74 lines
2.5 KiB
Markdown
74 lines
2.5 KiB
Markdown
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
|
# NVIDIA Distribution
|
|
|
|
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| datasetio | `remote::huggingface`, `inline::localfs` |
|
|
| eval | `inline::meta-reference` |
|
|
| inference | `remote::nvidia` |
|
|
| safety | `inline::llama-guard` |
|
|
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
|
| vector_io | `inline::faiss` |
|
|
|
|
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
|
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
|
|
|
|
### Models
|
|
|
|
The following models are available by default:
|
|
|
|
- `meta-llama/Llama-3-8B-Instruct (meta/llama3-8b-instruct)`
|
|
- `meta-llama/Llama-3-70B-Instruct (meta/llama3-70b-instruct)`
|
|
- `meta-llama/Llama-3.1-8B-Instruct (meta/llama-3.1-8b-instruct)`
|
|
- `meta-llama/Llama-3.1-70B-Instruct (meta/llama-3.1-70b-instruct)`
|
|
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (meta/llama-3.1-405b-instruct)`
|
|
- `meta-llama/Llama-3.2-1B-Instruct (meta/llama-3.2-1b-instruct)`
|
|
- `meta-llama/Llama-3.2-3B-Instruct (meta/llama-3.2-3b-instruct)`
|
|
- `meta-llama/Llama-3.2-11B-Vision-Instruct (meta/llama-3.2-11b-vision-instruct)`
|
|
- `meta-llama/Llama-3.2-90B-Vision-Instruct (meta/llama-3.2-90b-vision-instruct)`
|
|
|
|
|
|
### Prerequisite: API Keys
|
|
|
|
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/).
|
|
|
|
|
|
## Running Llama Stack with NVIDIA
|
|
|
|
You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
LLAMA_STACK_PORT=5001
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ./run.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-nvidia \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
```bash
|
|
llama stack build --template nvidia --image-type conda
|
|
llama stack run ./run.yaml \
|
|
--port 5001 \
|
|
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
|
```
|